
An Efficient Turnkey Agent for Repeated Trading
with Overall Budget and Preferences

I.B. Vermeulen∗, D.J.A. Somefun∗, J.A. La Poutré†∗
∗Center for Mathematics and Computer Science (CWI)

P.O. Box 94079, Amsterdam, The Netherlands
Email:{vermeule,koye,hlp}@cwi.nl

†Eindhoven University of Technology, School of Technology Management
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract— For various e-commerce applications autonomous
agents can do the actual trading on behalf of their users. We con-
sider an agent who trades repeatedly on behalf of his user, given
an overall budget and preferences per time step, both specified at
the start. For many e-commerce settings such an agent has limited
computational resources, limited prior information concerning
price fluctuations, and little time for online learning. We therefore
develop an efficient heuristic that requires little prior information
to work well from the start, even for very roughed nonsmooth
problem instances. Extensive computer experiments conducted
for a wide variety of customer preferences show virtually no
difference in performance between a dynamic programming (DP)
approach and the developed heuristic carrying out the agent’s
task. The DP approach has, however, the important drawback
of generally being too computationally intensive.

I. INTRODUCTION

E-commerce is rapidly becoming a more and more im-
portant economic activity. Among other things, e-commerce
provides buyers and sellers with the opportunity to conduct
important aspects of trading online: i.e., the actual sales and
even the actual terms of trade may be determined online. For
such situations, the concept of autonomous agents who, on
behalf of their users, do the actual online aspects of trading
has received a lot of attention (cf. [1], [2], [3]).

In this paper, we consider the approach of having an agent
trade repeatedly on behalf of his user given an overall budget
and preferences per time step, both specified at the start. There
are various goods or services (possibly offered by different
sellers) from which, depending on the prices, the agent’s user
is willing to purchase a subset per time step. The agent’s
task is to determine the content of this subset per time step.
Performance is measured by the overall utility as specified at
the start, under the restriction of spending at most the overall
budget. The agent’s task is related to the problem setting in the
literature on online sequential auctions (cf. [4] for related work
and [5] for an overview on sequential auctions). The novelty
of our approach lies in the fact that we address the problem
of online and dynamically assigning a budget per time step
based on an overall budget. In contrast, the literature on online
sequential auctions focuses on bidding strategies.

With online trading, prices can fluctuate more easily in
response to changing circumstances than with traditional trade
(cf. [6]). Thus potentially the prices of the goods purchased

can fluctuate significantly between time steps, making it more
difficult for an agent to perform well. In this paper, we
therefore design a heuristic, for performing the agent’s task,
which can deal with significant fluctuations in the prices
by delaying or accelerating consumption to the future or
present. The heuristic as developed is especially applicable
to real world situations characterized by fluctuating prices and
substitutability of consumption through time.

The heuristic utilizes the observation that under relatively
mild conditions certainty equivalence holds for the agent’s
task: i.e., with respect to the stochastic process underlying
prices the heuristic only uses the (estimated) expected values.
Based on the estimated expected values the developed heuristic
(re)assigns “soft” budgets to the remaining time steps, at the
beginning of every time step. It uses this soft budget as a
starting point for approximating, through local search, the
utility gains from delaying or accelerating consumption to the
remaining time steps or current time step, respectively.

Alternatively, the agent’s task can also be performed by
a dynamic programming (DP) algorithm (which also utilizes
the certainty equivalence property). For many e-commerce
applications there will be many agents simultaneously and
online performing tasks on behalf of their owners. For these
settings a DP approach is often too computationally intensive.
The developed heuristic has the important advantage of being
computationally much more efficient than a DP algorithm: for
relatively small problem instances the DP algorithm already
requires millions of extra iterations and this difference grows
exponentially in the size of the problem instance. Moreover,
extensive computer experiments conducted—in this paper—
for a wide variety of customer preferences show virtually no
difference in performance between a DP algorithm and the
developed heuristic carrying out the agent’s task.

Besides combining efficiency with a good performance, the
heuristic has the additional advantages of requiring no prior
information concerning the stochastic process underlying price
fluctuations and working well from the start. Not requiring
such prior information is an important advantage in many
settings. When the agent, for example, trades on behalf of
a customer in a retail market it is often not very realistic
to assume that a customer can provide the agent with such
(detailed) prior information about the market. The turnkey

Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems
Singapore, 1-3 December, 2004��

0-7803-8643-4/04/$20.00 © 2004 IEEE 1072

aspect of the heuristic (i.e., working well from the start)
is another important advantage in many settings. Often the
period, for which the agent trades on behalf of his user, is not
long enough to warrant long learning periods.

From an agent design perspective the developed heuristic
has also the advantage of allowing users to set a priori the
size of the neighborhood in which the heuristic searches
for improvements, with respect to the initial soft budget
assignments. The smaller this neighborhood the stronger the
agent is biased towards evenly spreading the expenses, all else
equal. Limiting the search space can be a desirable property
whenever users fear that their preferences specified at the start
may not fully reflect their bias towards evenly spread expenses.
Clearly, limiting the search space will go at the cost of the
performance. In a second series of conducted experiments we
investigate this trade off.

Application areas of the developed heuristic could be: de-
termining on a daily basis the subscription fee for receiving all
news items in a number of news categories (e.g., sport, finance,
culture and science) from an online news service; buying (on a
daily or hourly basis) banner-space from a number of sellers;
choosing today’s dinner (or lunch) from the various menus
offered by various food delivery services where the source of
price fluctuations may be changes in, for instance, the “menu
of the day.”

The next Section defines the agent’s task. Section (III) and
Section (IV) discuss the heuristic and DP algorithm. Exper-
imental results are presented in Section (V) and conclusions
follow in Section (V I).

II. DEFINING THE PROBLEM

A. Agent’s Task

Starting at time ts = 1, we consider a period of T time
steps; per time step the agent, on behalf of the user, agrees
upon a contract with the seller(s) of M goods (or services).
The contract specifies prices and a so called (contract) con-
figuration. A configuration specifies for all M goods whether
or not a user purchases the good. Given a contract at time
step t, the M dimensional vector ~ct specifies the contract
configuration: i.e., ~ct(i) = 1 if the ith good is purchased and
0 otherwise (for 1 ≤ i ≤ M). Morever, the M dimensional
vector ~pt denotes the prices (thus ~pt(i) denotes the price for
good i, with 1 ≤ i ≤ M).

At time step t, U(~ct) denotes the utility of purchasing the
goods specified by the contract configuration ~ct; note, the
user’s utility for a configuration does not depend on the time
of purchase. The agent’s performance depends on the overall
utility obtained in the T time steps given the restriction that
the overall expenses do not exceed some initially allocated
budget b1. Randomness of the prices represents a complicating
factor (i.e., the sequence of prices, {~pt}

T
t=1, gives rise to

multivariate random variables). Let bt denote the remaining
overall budget at the beginning of time step t and ht denote
the history, which we define recursively: h1 = ∅ and ht =<

{bt−1, ct−1, pt−1}, ht−1 > for 2 ≤ t ≤ T . The agent’s task is
then to find a policy π, which for each time step determines the

contract configuration—contingent on ht—such that the total
expected utility is maximized. More formally, a policy consist
of a sequence of functions: i.e., π = {µ1, . . . , µT }, where (for
1 ≤ t ≤ T) the function µt takes ht, the history, as an input
and outputs ct, the current contract configuration. (Dependable
on the distribution underlying the multivariate random vari-
ables {~pt}

T
t=1, it may suffices to take {bt−1, ct−1, pt−1}—or

some other truncation of the history—as an input of µt.) The
agent’s task can then be defined as follows:

max
π

E
[

∑T
t=1 U(µt(bt))

]

(1)

s.t. bt+1 = bt − ~pt · µt(ht),

b1 > 0, and bt+1 ≥ 0.

E[·] denotes the expected value with respect to the (multivari-
ate) random variables {~pt}

T
t=1.

B. Difficulties with Agent’s Task
Equation (1) gives rise to a non-linear stochastic program-

ming problem (cf. [7]). The following four considerations,
however, make standard techniques less applicable:

1)(discreteness) Due to the discreteness of ~ct (i.e., ~ct ∈
{0, 1}M) there will generally not exist a closed solution
to the problem and there may be multiple (local) optima.
The essential difficulty with the discreteness of ct lies in
the fact that—whenever the prices of the individual goods
differ—relative small changes in the expenditures could lead
to a completely different optimal choice of ct; with a small
increase in the expenditures a higher priced (and much higher
valued) good may be purchased at the expense of lower priced
(and much lover valued) goods. Thus generally the problem
specified by equation (1) can only be solved numerically.

2) (No prior information) For many real world application
no prior knowledge is available of the stochastic process
underlying the (multivariate) random variables {~pt}

T
t=1.

3)(Small T) The period T is not long enough to warrant (on-
line) learning of the underlying stochastic process through, for
example, standard reinforcement learning techniques, cf. [8].

4)(Limited Computational Resources) For many agent appli-
cations there will be many agents simultaneously performing
tasks on behave of their owners. To restrict the computational
resources necessary for running these agents simultaneously
it is a very desirable property to perform a task well while
making efficient use of the computational resources.
In order to take these considerations into account we develop
a so called efficient turnkey heuristic: it should immediately
work well and be computationally efficient.

III. EFFICIENT TURNKEY HEURISTIC

A. Redefining the Agent’s Task

The heuristic uses the fact that the agent’s task is essentially
a budget allocation problem. To see this, we first define at
every time step t (with 1 ≤ t ≤ T) the function U ∗

t+i(e), for
all remaining time steps, as follows:

U∗

t+i(e) ≡ max~c Ut+k(~c) (2)
s.t. e − E[~pt+k|ht] · ~c ≥ 0,

1073

with 0 ≤ i ≤ T − t, and e ∈ R
+. Thus U∗

t+k(e) specifies
the maximum utility attainable at time step t + i when the
expected expenses, predicted at time step t, are at most e. The
agent’s task as specified in equation (1) can now be redefined
as follows:

max
π′

∑T
t=1 U∗

t (E[µ′

t(ht)]) (3)

s.t. bt+1 = bt − µ′

t(ht),

b1 > 0, and bt+1 ≥ 0,

where the policy π′ consists of the sequence of functions
{µ′

1, . . . , µ
′

T } and (for 1 ≤ t ≤ T) the function µ′

t takes ht,
the history, as an input and outputs et the current expenses.
(We assume that the current prices are known at the beginning
of the current time step.) E[µ′

t(ht)] denotes the expected
expenses at time step t. Equation (3) specifies the agent’s task
as a problem of allocating the overall budget b1 to the T time
steps. More generally we can say that at the beginning of time
step t the agent’s task is to (re)allocate the remaining budget
bt to the remaining T − t time steps.

One general observation we can make, based on rewriting
the agent’s task, is that under certain relatively mild conditions
the following property holds:

PROPERTY 1: (Certainty Equivalence) It follows from
equation (2) and (3) that if prices are independent of the (past)
expenses (i.e., E[~pt+k|ht] = E[~pt+k|p0, . . . , pt]) then the so
called certainty equivalence property holds.

With certainty equivalence the agent’s task reduces to a
deterministic problem, where the actual prices are replaced
by the expected values of the (multivariate) random variables
{~pt}

T
t=1. Especially when there are numerous (potential) buy-

ers, their individual impact on prices will be limited. Therefore
certainty equivalence is a good starting point for the developed
turnkey heuristic: i.e., with respect to the stochastic process the
heuristic only uses knowledge of the expected values of the
(multivariate) random variables.

B. Assigning the Soft Budgets

The heuristic performs the task of (re)allocating the overall
budget remaining at time step t, bt, by first roughly allocating
bt to the remaining T + 1 − t time steps. These first budget
assignments represent the “soft” budgets of the remaining time
steps. The heuristics then searches in the vicinity of these soft
budgets for local improvements. At the (beginning of the)
current time step t, the soft budgets for the remaining time
steps es

t+i (for 0 ≤ i ≤ T − t) are assigned according to the
rule

es
t+i =

bt

(T + 1 − t)
·
~1 · E[~pt+i|ht]

~i · ~pt

. (4)

where ~1 denotes a M dimensional vector of 1’s (e.g., ~1 · pt

denotes the sum of the prices).
The idea underlying equation (4) is to have the soft bud-

get assignments approximate the optimal budget assignments
whenever discreteness is not a real issue. To see this, first recall
that the utility for purchasing configuration ~c at time step t and

t′ results in the same utility U(~c): i.e., user’s preferences do not
differ between time steps. Furthermore if discreteness is not a
real issue the preference relation can be closely approximated
by a continuous utility function, which for most goods would
be well behaved (cf. [9]). Consequently, the optimal budget
allocation would be such that the agent is indifferent between
consuming now or later. If there are no expected differences
in the price level between two time steps, the overall budget
is spread equally over the remaining time steps. Otherwise,
the budget per time step will be monotonically increasing in
the relative price level: the smallest budget is assigned to the
most expensive day, the second smallest budget is assigned
to the second most expensive day, and so on. Equation (4)
exactly mirrors these optimal budget assignments (for smooth
and well behaved utility functions) whenever there are no
expected differences in the price levels, otherwise it mirrors
the qualitative aspects.

C. k-Local Search

After these initial budget assignments, the idea is to accom-
modate for the discreteness of the problem by locally searching
for improvements. To that end, the heuristic compares the
utility of purchasing exactly the current soft budget with
either spending more or less than the soft budget, in the
current time step. Deviations from the current soft budget
are shared equally among the minimum number of remaining
time steps necessary to fully compensate for such a deviation.
Following the budgets adjustments in the necessary time steps,
the heuristics computes the average utility for all the time steps
with adjusted budgets (see also algorithm (1)).

The size of the neighborhood in which the search is
conducted depends on the parameter k (for a 0 ≤ k ≤
2M): k determines the actual deviation from the current soft
budget, by specifying the maximum deviation from the goods
purchased with such a budget. In case k = 0, the current soft
budget becomes a “hard” budget. Moreover, in case k = 2M ,
the actual expenses in the current time step can fluctuate
between buying 0 goods, all M goods, and any combination
that lies in between. Thus k specifies how hard or soft the
initially assigned budget is. Alternatively, we can interpret
k as a parameter with which a user can control the agent’s
autonomy with respect to distributing the overall budget based
on the provide preferences: the smaller k the stronger the agent
is biased towards evenly spreading the budget, all else equal.

The k-local search algorithm, applied whenever t < T , first
makes an ordering of all possible configurations of goods (2M)
in ascending expenditure. Next it removes all configurations
with a lower utility than a configuration earlier in the order.
These operations result in the list of optimal configuration for
all possible expenses. Given this list, ~ct

′, the best configuration
which can be bought with the soft budget (es

t), is selected. The
search neighborhood, Ng, is defined from k steps down, to k

steps up from ~ct
′ in the ordering (with the restriction that the

neighborhood is within spending nothing and spending the
complete remaining budget). Algorithm (1) gives the pseu-
docode for selecting the best combination in the neighborhood.

1074

Algorithm 1 Procedure for selecting the best configuration.

1. umax = 0 and ~c∗ = ~0
2. for all ~c ∈ Ng{
3. l = 1 //stores no. future steps influenced by buying ~c

4. while (~pt · ~c > es
t +

∑l
i=1 es

t+i) {l = l + 1}

5. u = 1
l+1 ·

[

U(~c) +
∑l

k=1 U∗

t+k(es
t+k − ~pt·~c−es

t

l
)
]

6. if u > umax{
7. umax = u

8. ~c∗ = ~c}
9. }return ~c∗

D. Complexity Heuristic

The asymptotic running time of the developed heuristic
depends on the procedure for k-local search. At time step t, the
procedure performs at most T +1−t calls to a function U ∗

t+i(·)
(for a 0 ≤ i ≤ T−t), for every element in the neighborhood in
which the search is conducted, Ng with |Ng| ≤ min(2k, 2M).
Given sufficient memory, it is most efficient to compute/update
U∗

t+i(·) (for all 0 ≤ i ≤ T − t) at the beginning of every time
step and store it in lookup tables. With lookup tables, the actual
function calls can be conducted in O(1) time. The worst-case
(asymptotic) upper bound on the running time at time step t, of
the developed heuristic, is then (T +1−t)·min(2k, 2M)·O(1)
plus the cost for creating the lookup tables.

For all remaining T + 1 − t functions U ∗

t+i(·), a lookup
has to be created and each table contains the utility for (at
most) all 2M possible bundles. Therefore creation of these
lookup tables has a (tight) worst-case asymptotic upper bound
of O((T + 1 − t) · 2M). Thus we have the following:

PROPERTY 2: (Computational Complexity Heuristic) The
computational complexity of the heuristic is O((T + 1 − t) ·
(2M + min(2k, 2M))).

Because the required storage capacity is exponential in M , the
lookup tables can only be generated for relatively small values
of M . This can however easily be done, for the values of M

we consider.

IV. DYNAMIC PROGRAMMING BENCHMARK

We can also develop a dynamic programming (DP) al-
gorithm for performing the agent’s task (as specified by
equation (3)), which like the turnkey heuristic uses certainty
equivalence as the starting point (see property (1)). Such a DP
algorithm only requires knowledge of the expected values of
the (multivariate) random variables. An important drawback
of such a DP algorithm is its efficiency; it nevertheless can
serve as a benchmark for the developed heuristic.

Let B denote the domain of all possible budget values; B

is bounded by the overall budget b0 and is (generally) finite
due to the discreteness of prices. Additionally, let U ∗

t+i for all
0 ≤ i ≤ T − t be given. We can then define the DP algorithm

recursively as follows:

V ∗

T (b′) = U∗

T (b′) (5)
V ∗

i−1(b) = max
e

{

U∗

i−1(e) + V ∗

i (b − e)
}

i = t, . . . , T − 1,

for all b′, b, e ∈ B and e ≤ b. The performance of the DP
algorithm depends on the accuracy of the predicted price level,
incorporated in the functions U ∗

i .
Note that given V ∗

i (·) the DP algorithm can obtain V ∗

i−1(·)
by having to compare for all b ∈ B—in the worst-case—
the utility U∗

i−1(e) + V ∗

i (b − e) for all 2M possible values of
e (i.e., all possible bundle combinations given M individual
goods). Thus in the worst-case there are |B| · 2M calls to a
function U∗

i−1 necessary at time step i and these calls have to
be repeated at all T + 1 − t remaining time steps.

It is most efficient to use lookup tables for these function
calls such that, after creating/updating these lookup tables, the
actual function calls can be conducted in O(1) time; creating
the tables has a (tight) worst-case asymptotic upper bound of
O((T + 1 − t) · 2M) (see Section (III − D)). Thus we have
the following:

PROPERTY 3: (Complexity DP) The worst-case complexity
of the DP algorithm is O

(

(T + 1 − t) · 2M (1 + |B|)
)

.

In the experiments we compare the DP algorithm with the full
search turnkey heuristic (i.e., k = 2M). The difference in the
complexity of these two procedures is the following:

PROPERTY 4: (Difference Complexity DP vs. Heuristic
with full search) The difference in computational complexity
between the DP algorithm and the heuristic with full search
is O

(

2M (T + 1 − t)(|B| − 1)
)

.

To fix ideas table (I) computes the difference in complexity
between the DP algorithm and the heuristic with full local
search, for a few examples.

M = 7, T = 15 M = 10, T = 15

b1 = 100$ 1279872 10238976

b1 = 1000$ 12799872 102398976

TABLE I
EXTRA STEPS OF DP ALGORITHM;A CENT IS THE SMALLEST UNIT

V. EXPERIMENTS

A. Problem Space

To get a robust evaluation of our heuristic we experimented
on a wide range of (relatively) realistic settings. In this
Section we discuss settings related to the “discreteness” of
the problem. In Section (V − B) we discuss variations in the
stochastic process underlying the prices.

a)(Number of Goods) The discreteness of the problem
is directly related to the number of goods (the larger the
number of goods the less discreteness becomes an issue, all
else equal). For the applications we have in mind (choosing
between various news categories, buying banner spaces, etc.)

1075

the number of goods is relatively limited. We therefore set the
number of goods M to an arbitrary but relatively small number
of 7. By sufficiently varying the other problem settings, which
influence the discreteness of the problem, we can nevertheless
get a good insight in the (relative) performance of the heuristic
in relation to the discreteness of the problem.

b)(Curvature of U∗) In equation (2) we define the function
U∗

i , for all 1 ≤ i ≤ T . (Henceforth we use U ∗ when discussing
common aspects of these T functions.) With divisible goods
U∗ is generally assumed to have decreasing marginal utility in
the expenses. Decreasing marginal utility arises (at least partly)
due to the fact that dollars are first spent on the highest valued
goods, then they are spent on the second highest valued good,
and so on. Due to nondivisibility the order in which goods are
purchased depends also on the available budget. Consequently,
the functions U∗

i will generally have intervals with decreasing
and increasing marginal utility.

In order to create a variety of functions U ∗

i with different
curvatures we fixed the relative difference between the prices
for all our experiments. (In the conducted experiments we do
however vary the (expected) price level over the various time
steps.) Prices are set such that the highest valued good is also
the most expensive good; the second highest valued good is the
second most expensive good; and so on so forth. We then vary
the shape of the functions U∗

i through the user’s preference,
by varying a parameter α.

PROPERTY 5: (Property of α) Suppose (without loss of
generality) that the utility of good i, U(i), is lower or equal
to the utility of good i + 1, U(i + 1), for all 1 ≤ i < M

(consequently p(i + 1) ≥ p(i) also holds). Then α has the
property U(i+1)−U(i)

p(i+1)−p(i) = αi for all 1 ≤ i < M .

Thus for α = 1, α < 1, and α > 1 the gains in utility
of moving from the ith good to the (i + 1)th ranked good
is exactly proportional, less than proportional, and more than
proportional to the associated price increment. In the exper-
iments 2.5 represents the maximum for α; for α = 2.5 the
utility-price-increment ratio grows exponentially at a rate of
2.5, which is already an extreme case. Values near 1 are
probably most common in every day situation. Figure 1 depicts
typical U∗ functions for different values of α.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

ut
ilit

y

expenses

alpha = 0
alpha = 0.5

alpha = 1
alpha = 1.5
alpha = 2.5

Fig. 1. U∗ for different values of α

c)(The Budget) If the budget is relatively small, the number
of goods that can be purchased is also small, which means
a higher level of discreteness. Alternatively, if the budget is
relatively large then it is always possible to buy the best goods,
and the remaining money can be spend on goods with lesser
utility (which make a significantly smaller contribution to total
utility). To get a general performance measure we conduct
all our experiments over a range of budget values (between
3% and 50% of the budget that buys everything). We do
not experiment with a budget above 50% because then it is
always possible to buy the best good at every time step (the
problem becomes so simple that the extra complexity of the
DP algorithm is obviously not necessary).

B. Experimental results

In this Section we compare the performance of the heuristic
with full search to the DP algorithm benchmark. Both proce-
dures need to compute U∗

t+i at the current time step t, for
all remaining time step. To compute U ∗

t+i requires estimating
E[~pt+i|ht]. The two algorithms use the average of the past
t prices as an estimator: i.e., Ê[~pt+i|ht] = 1

t

∑t
j=1 p(t). We

then consider three different situations for the price level:
1) no randomness, the prices are constant
2) the price level fluctuates but the expected price level is

constant: i.e., the estimator is consistent
3) the price level follows a random walk: i.e., the estimator

is inconsistent.
The objective of these three series of experiments is to see
how both procedures perform while we increase the level of
uncertainty through the stochastic process underlying the price
level. We do not vary both the price level and the relative
prices; controlling the discreteness of the problem through α

is then no longer possible. By varying the price level we mimic
the occurrence of expensive and cheap time steps.

In all the conducted experiments there are 7 individual
goods, M = 7, and the overall period contains 15 individual
time steps, T = 15. In order to run the benchmark in reason-
able time we had to severely limit the domain (|B| < 1000).
Such a limitation has no effect on the relative performances,
but the necessity for it does show the high complexity of our
benchmark. (For all results, the values presented are averaged
over 35 different budgets times 30 different random seeds.)

1)(Constant prices) Figure (2a) depicts the relative perfor-
mances for the situation with constant prices. With constant
prices the agent is able to make an exact prediction of the
prices of future time steps. In this situation the benchmark
always gives the optimal solution. The performance of the
heuristic is presented relative to the performance of our
benchmark, for different values of α. We can observe that
our heuristic performs near optimal over the whole range.

2)(Consistent Estimator) The price level at each time step
is drawn from an independent uniform distribution which lies
between −40% and +40% of the average level. Figure (2b)
depicts the results of the conducted experiments.

Due to certainty equivalence (see property (1)) the bench-
mark would be optimal whenever the expected prices would be

1076

a

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02

 0 0.5 1 1.5 2 2.5

Re
la

tiv
e

to
 b

en
ch

m
ar

k

b

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02

 0 0.5 1 1.5 2 2.5

Re
la

tiv
e

to
 b

en
ch

m
ar

k

c

 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1
 1.02

 0 0.5 1 1.5 2 2.5

Re
la

tiv
e

to
 b

en
ch

m
ar

k

alpha

Fig. 2. Relative performances: a) constant prices, b) consistent predictor, c)
inconsistent predictor, for different values of α

known. Since both approaches use a consistent estimator, the
benchmark still has a relative good performance. For α < 1
the difference is minimal, for α > 1 we observe a larger
difference, but the heuristic still has a good performance.

3)(Inconsistent Estimator) The price level follows a random
walk. The price level at each time step is the price level
of the previous time step plus noise. The noise is randomly
drawn from a uniform distribution which lies between +15%
and −15% of the price level at the first time step. (We add
the restriction that the price level can never drop below 10%
of the price level of the first time step.) For this underlying
stochastic process certainty equivalence also still holds. The
idea is, however, that the heuristic may suffer less from larger
prediction errors.

Figure 2c depicts the relative performance for different
values of α. The fact that both procedures use an inconsistent
estimator has a larger negative effect on the dynamic pro-
gramming approach. Our heuristic with a full search performs
almost just as well, and in some cases even slightly better.

C. Limiting local search

Another advantage of our heuristic is that the user has
control over the autonomy of the agent. By limiting the local
search range a user can, ensure more distributed spending
over the whole period (rule out extremes) and limit the
complexity, at the cost of reduced optimality. Figure 3 depicts
the performances for smaller values of k relative to full search
(for the random walk case).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5

Re
lat

ive
 to

 fu
lls

ea
rc

h

alpha

k=0
k=7

k=14
k=21
k=28

Fig. 3. Performances for different search fields relative to full search

VI. CONCLUSIONS

We have presented an efficient turnkey heuristic for repeated
trading with a bounded overall budget, and compared its
performance to a dynamic programming (DP) benchmark. The
heuristic uses a soft budget to specify the expenses at each
time step, within the vicinity of the soft budget it then searches
for improvements. Extensive computer experiments conducted
for a wide variety of customer preferences show virtually no
difference in performance between a DP algorithm and the
developed heuristic carrying out the agent’s task. The DP
algorithm has, however, the important drawback of generally
being too computationally intensive. Moreover the heuristic’s
performance improves further when both procedures use an
inconsistent estimator; for a certain range of problems it
even slightly outperforms the DP benchmark. An additional
virtue of the developed heuristic is that it allows the user to
control the agent’s autonomy. A second series of experiments
illustrates the trade-off between limiting the local search and
the performance.

REFERENCES

[1] M. Klein, P. Faratin, H. Sayama, and Y. Bar-Yam, “Negotiating complex
contracts,” Group Decision and Negotiation, vol. 12, pp. 111–125, 2003.

[2] P. Faratin, C. Sierra, and N. R. Jennings, “Using similarity criteria to
make issue trade-offs,” Journal of Artificial Intelligence, vol. 142, no. 2,
pp. 205–237, 2003.

[3] D. J. A. Somefun, E. Gerding, S. Bohte, and J. A. La Poutré, “Automated
negotiation and bundling of information goods,” in Proceedings Agent
Mediated Electronic Commerce V, ser. LNAI, J. A. Rodriguez-Aguilar
(et al.), Ed. Berlin: Springer-Verlag, 2004, vol. 3048.

[4] C. Boutilier, M. Goldszmidt, and B. Sabata, “Sequential auctions for
the allocation of resources with complementarities,” in Proceedings
of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), 1999, pp. 527–523. [Online]. Available:
citeseer.ist.psu.edu/boutilier99sequential.html

[5] V. Krishna, Auction Theory. Academic Press, 2002.
[6] R. Amit and C. Zott, “Value creation in ebusiness,” Strategic Management

Journal, vol. 22, pp. 493–520, 2001.
[7] D. P. Bertsekas, Dynamic Programming: Deterministic and Stochastic

Models. Englewood Cliffs, New Jersey: Prentice-Hall, 1987.
[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

ser. Adaptive Computation and Machine Learning. Cambridge Mas-
sachusetts: The MIT Press, 1998.

[9] A. Mas-Collel, M. D. Whinston, and J. R. Green, Mircoeconomic Theory.
Oxford University Press, 1995.

1077

	Previous Menu
	Main Menu
	Getting Started
	Foreword
	Sessions
	Authors

	Search CD-ROM
	Search Results
	Print

