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Abstract. As demand for health care increases, a high efficiency on limited re-
sources is necessary for affordable high patient service levels. Here, we present
an adaptive approach to efficient resource usage by automatic optimization of
resource calendars. We describe a precise model based on a case study at the
radiology department of the Academic Medical Center Amsterdam (AMC). We
model the properties of the different groups of patients, with additional differen-
tiating urgency levels. Based on this model, we develop a detailed simulation that
is able to replicate the known scheduling problems. In particular, the simulation
shows that due to fluctuations in demand, the allocations in the resource calen-
dar must be flexible in order to make efficient use of the resources. We develop
adaptive algorithms to automate iterative adjustments to the resource calendar.
To test the effectiveness of our approach, we evaluate the algorithms using the
simulation. Our adaptive optimization approach is able to maintain overall target
performance levels while the resource is used at high efficiency.

1 Introduction

Hospitals continuously aim to improve their patient-oriented care. They want to pro-
vide their patients with high service levels. However, the demand for health care is
increasing, and more patients must be treated with the same capacity. High efficiency
on resources is necessary for high service levels.

Traditional approaches to logistical improvement are usually not suited to the med-
ical domain. The distributed authority in hospitals [1] makes improvements involving
many departments difficult to implement. Furthermore, scheduling decisions must be
made depending on the individual patient’s specific attributes. Efficient scheduling of
patient appointments on expensive resources a complex and dynamic task.

Hospital resources are many: ranging from CT and MRI scanners, to hospital beds,
to attending staff. A resource is typically used by several patient groups with different
properties [2]. There are groups of inpatients (admitted to the hospital) and outpatients
(not admitted), with different levels of urgency [3]. The total hospital resource capacity
is allocated to these groups, explicitly or implicitly. Either way, due to fluctuations in
demand, this allocation must be flexible to make efficient use of the resources.

To allocate hospital resources, electronic calendar-systems are widely applied. How-
ever, they are mostly just storing the patient appointments. The actual scheduling ap-
proach largely influences whether resources are efficiently used. Efficient resource us-
age and short waiting times are of great importance to the hospital departments. De-
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partment managers can control options such as changing the capacity, or adjusting the
performance goals. It is typically hard to determine the effect of such changes a priori.

In this paper, we study the case of scheduling Computer Tomography scans (CT-
scans) at the radiology department within the Academic Medical Centre Amsterdam
(AMC). The AMC is a large hospital with approximately one thousand beds, and treat-
ing around 350,000 outpatients annually. Currently the radiology department makes
more than 15,000 CT-scans per year. Diagnostic resources such as the CT-scanners are
literally central in the clinical pathways of many patients. Long access times to such
resources are immediately felt as bottlenecks for health care processes in the hospital.

In recent years the logistical process around the CT-scan has improved already sub-
stantially [8]. The actual scheduling of appointments is (still) done manually. A calendar
supervisor determines a long time in advance how the scanner capacity is allocated to
different groups of patients. This allocation is determined based on experience, future
expectation, and in cooperation with medical experts.

The calendar supervisor also monitors and adjusts the allocations in the calendar
on a regular basis (at least daily) to maintain its efficiency. Often, the actual realization
of patient arrival does not match the allocation. This results in inefficient use of the
capacity and/or increased waiting time for patients. The calendar supervisor can adjust
the calendar to counter such problems. With constant active — and time consuming —
supervision of the calendar, the manual scheduling practice performs satisfactory.

However, making good adjustments is critically dependent on the supervisor's ex-
pertise: even a short vacation or illness of the calendar supervisor leads to immediate
significant deterioration of the resource efficiency. From a planning and sustainability
perspective, this is highly unsatisfactory.

Here, we develop an approach to automatically determine effective optimizations of
a resource calendar we derive from our case study. Our approach enables the calendar
supervisor to quickly implement calendar adjustments, and anticipate — and remedy —
the impact of current demand trends of future resource efficiency.

As a model of hospital resource scheduling, we present a precise model for our
application case of CT-scan scheduling. Our model and its parameter values are de-
termined from extensive case analysis. Sources include historical data and extensive
discussion with experts at various levels in the organization.

We have implemented an extensive computer simulation of the application case.
This allows us to study various problem scenarios and scheduling approaches. It can
serve as a prototype as the final step towards application.

Furthermore we present our adaptive approach to automatic optimization of re-
source calendars. In our approach the allocation of capacity to different patient groups is
flexible and adaptive to the current and future situation. To maintain high performance
levels, our system exchanges capacity between different urgent and non-urgent patients
groups. Additionally, resource openings hours can be reduced to increase capacity usage
while maintaining high performance levels, or extended to counter increasing waiting
time. We extensively evaluate our adaptive approach in our simulated environment,

Other approaches consider how to coordinate patient scheduling, such as [4], and
[5]. In this work, human schedulers still make local decisions based on their experi-
ences and knowledge of the individual patient. It supports the current process, making
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it suitable for fast application. In [6] the author considers updating the allocation of
hospital resources to the departments; here, we provide a more operational approach at
the level of scheduling patients. In [7] the authors present a first step towards a general
model for solving resource conflicts represented as a constraint satisfaction problem,
our approach directly focuses on maintaining high performance levels. Our approach
can straightforwardly be applied to similar situations where resources are shared be-
tween patient groups for which an appointment calendar is used.

2 CT-scan Scheduling Model

In this Section, we define our CT-scan scheduling model. From the AMC electronic
calendar system, we have collected the historical data of the appointments made (from
October 2005 until March 2006). We have complemented this with data from actual
production of CT-scans (November 2005 until January 2006). During this period, some
scans were taken without an appointment. We derive patient distributions and schedul-
ing practice from this data, site-visits, and extensive discussions with the human sched-
ulers, the calendar supervisor, and resource manager.

Our model consists of three main parts, discussed in the following sections. One part
is the set of arrivingpatients that need to be scheduled for an appointment. Secondly,
we have the available resource, and the way the associated appoictienrdar is
structured. The third part is theehedulingprocess that determines how appointments
are made by assigning patients to timeslots on the calendar.

2.1 Patients

An important issue is that there is a great variety in patients and scan attributes. We
make the abstraction that a patient always needs to be scheduled for exactly one CT-
scan. We therefore model the patient and his/her scan as a unity, which we from now on
refer to as 'patient’. Patient attributes are listed in Table 1.

In practice, patients and their attributes are structured in different patient groups.
Table 2 lists these groups and their specific properties. The group size is given relative
to the total number of patients.

The largest group -eut+ivc — is comprised of non-urgent outpatients who need
intravenous contrast (ivc) injected before taking the CT-scan. Non-urgent outpatients
who do not need intravenous-contrast are in the gautpivc. All urgent outpatients
form the groupurgent. The fourth group -€linic — consists of all inpatients.

Besides these four groups, there are a number of smaller, highly specific groups:
special,. These include patients taking part in special programs, and patients who need
a specific treatment for making a CT-scan. E.g., one special group is the group of pa-
tients, usually children, who need to be sedated while making the CT-scan.

Urgency of patients is defined in terms of planning windomsaNwIN) with dif-
ferent sizes. Outpatients with normal urgency (out+ivc, and out—ivc) have a planning
window of (2, 14), which means that the appointment must be scheduled betiveen
days andi4 days after the request for the scan is made. Urgent outpatients and clinic
patients have high urgency and have planning windows of a few days. Patients from
special groups are always scheduled to the first available timeslot of matching type.
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Table 1. Patient attributes

attribute description
request time date and time when request for CT-scan is made
in-/outpatient is the patient an in- or outpatient?

contrast neededfvc) does intravenous-contrast need to be injected?
planning window planwin)|expresses urgency of patient.
duration of the needed appointment

Table 2. Patient groups

group |urgency|planwin (fraction) duration |size(%)
out+ivc |[normal |(2,14) 15mins  [52% + 6%
out-ivc [normal ((2,14) 15mins (23% + 4%,
urgent |high  [(0,1)(33%), (0,2)(33%), or (0,3)[15 mins  |10% + 3%
clinic  [high  {(0,1)(40%), or (0, 2) 30mins 6% + 2%
special,|n.a. n.a. duration,|9% + 2%

2.2 Resource Calendar

Patients must be scheduled to a timeslot on the calendar. The total resource capacity
is given by the number of actual CT-scannergin our casen = 2) and the opening
hours. The hospital’s emergency room has an additional CT-scanner, which is used as a
walk-in facility for emergencies, which we do not consider in our model.

A standard calendar is used, structured in days and weeks. The time on the calendar
is partitioned into timeslots of different sizes. All timeslots have a size of a multitude
of the unit sizeus. (In our caseus is 15 minutes, and we use timeslots of sizes 1
up to 4us.) The parameters in Table 3 define the resource calendar. The parameters
andus are fixed for long periods of time, the remaining can vary. Openings hours must
be known at least one week in advance to plan staff. In general we assume that the
actual resources are interchangeable.

Timeslot Type Specification CT-scan capacity is reserved for different patients groups
and these allocations serve medical restrictions (e.g. due to preparation constraints for
narcosis), as well as a scheduling goal (e.g. reserve timeslots for urgent patients). E.g.,
on the actual calendar, three timeslots are reserved on all Thursday mornings for pa-
tients from aspecial,, group, who need to be sedated while making the CT-scan. Dur-
ing lunch time, radiologists schedule meetings and other activities. Therefore, out+ivc
patients, who need to be injected with intravenous contrast for which a radiologist must
be present, cannot be scheduled during lunch. In the afternoon of every day a number
of timeslots is reserved for urgent outpatients.

We model this allocation by using a timeslot-type specification (TTS). A timeslot-
type specifies which patient can be scheduled to a certain timeslot (Table 4). The TTS
thus determines how much of the resource capacity is allocated to the patient groups.
The TTS is not necessarily fixed as the capacity allocation can be dynamically altered.

The TT special,, type of timeslots can only be used by very specific types of pa-
tients. For each of these types there is a rule which states that if there are still any free
slots remaining-, days in advance, these slots are changed to TTout type of timeslots.
This rule is currently the only automatic TTS adjustments in operation at the hospital.
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Table 3.Calendar parameters Table 4. Timeslot Types
parameter|description Timeslot-Type|allowed patients |size
m number of resources TTout out+ive, out-ive, |lus
0j.d opening time of urgent

resource jon day d TT-ivc out-ivc, lus
Cj,d closing time of (during lunch) |urgent(with no ivc

resource jon day d TTurgent urgent lus
us unit size timeslots TTclinic clinic 2us
TS timeslot type specificatign TTspecial, |specialy, 1-4us

2.3 Scheduling

Scheduling is the process of assigning patients to timeslots, i.e. making appointments.
In the case we describe, scheduling performance of different approaches is influenced
by two things: first, by how well the TTS matches the actual situation, and second, by
the actual scheduling method (the selection of a timeslot per patient given the TTS).

As in many hospitals, for the AMC CT-scanners the actual scheduling of appoint-
ments is done manually. Human schedulers schedule patients in turn, by looking on the
calendar for an available slot, or using the search function of the electronic calendar sys-
tem. The search returns a list of available timeslots. Human schedulers have expertise
in taking the individual patient’s attributes into account. They can also use a patient’s
preference (e.g. for a specific day, or time). However, the human schedulers have little
overview on how their local decisions will influence overall performance goals

The calendar supervisor can adjust the TTS in case there is a mismatch between
the TTS and the actual realization of patient arrivals. The human schedulers are used to
working with different types of timeslots on the calendar. They use their expertise and
long-time experience to select timeslots within the scheduling rules.

3 Simulation

Based on the model we have implemented a patient scheduling simulation (PSS). We
use the PSS in the evaluation of different scheduling and resource management ap-
proaches. The PSS takes as input distributions of patients attributes, the standard re-
source openings hours and TTS, a scheduling method, a performance measure, and an
adaptive model of how to adjust the TTS and openings hours. The PSS generates a
patient stream, a filled-in calendar, the used openings hours and a performance value.

Patient arrival simulation With our model of patient properties and the relative re-
quest proportions, we can simulate the arrival of all patients during a week. In the sim-
ulation, we have structured the arrival process by the following steps for each week:

1. A standard random walk with a drift towards the average fits the distribution
over the number of patients arrivals per week. The number of patients for next week
(nw+1) is determined as a function of the current patient arrivalsas:

N — Ny
Nw+1 = Ny +N(0a0)+ = ’
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where N (0, o) a normally distributed fluctuation of patient arrivals. We set=
250, ng = 7, o = 30, andr = 3.

2. Givenn,, divide the patients over the groups, using the distribution from Table 2,
where out+ivc will get the remainder of, ~ 52% .

3. Per patient determine request date within week (see below).

4. Per patient determine request time on request day, using a uniform distribution over
the opening hours.

5. Per patient determine the planning window using the distributions from Table 2.

6. Order patients by increasing request time within week.

Because of extra rounds for inpatients on Monday and Friday, patient arrival (step
3 above) is slightly structured during the week. On Monday and Friday twice as many
requests for CT-scans of inpatients are ordered compared to the other three weekdays.
Requests for outpatients arrive uniformly over the week. Note that as resource is closed
on Saturday and Sunday, urgent and clinic patients requested on a Fridayrwitha
wiN of (0,1) or (0,2) must also be scheduled to that Friday.

Resource Calendar and Scheduling Approachin our simulation we use a resource
calendar, which is similar to the calendar used in practice. Opening time on the calendar
is 8:30, while the resource closes at 16:45. To simulate current scheduling practice we
use the following scheduling method:

First Come Randomly Served (FCR®htients are scheduled in order of arrival. A
patient is assigned to a timeslot within his planning window, randomly selected from
all the free timeslots of the allowed types. If there are no free timeslots within the
planning window, the first free timeslot after the planning window is selected.

For non-urgent patients FCRS simulates the scheduling process where patient pref-
erences are taken into account. We represent this by random allocation to free slots.
Urgent and clinic patients have high urgency and thus patient preferences are of little
importance. In current practice however, the human schedulers do not take the individ-
ual urgency of these patients into account and are therefore also scheduled randomly.
We will present a dynamic approach to the scheduling of urgent and clinic patients in
the next Section. Additionally our adaptive model for calendar adjustments is input for
the scheduling approach used in the PSS.

Performance Measure Based on discussions with hospital experts, we want our per-
formance measure to express that patients must be scheduled within their planning
windows. It is important that each group (G) has a good service level. We define the
minimum service level X/ SL), over the four main groups of Table 2, as:

MSL — mén (|pat|ente G= ontlmq> ’

G|

where ontime is defined as scheduled within the planning window.



Adaptive Optimization of Hospital Resource Calendars 7

today, d =0 d=1 d=2 d=3 d=4

R(TTurgent0,3) | R(TTurgent0,3)
reqd =0 reqd =1

R(TTurgent0,2) | R(TTurgent0,2) | R(TTurgent0,2)
reqd =0 reqd = 1 day 2

R(TTurgent0,1) | R(TTurgent0,1) | R(TTurgent0,1) | R(TTurgent0,1)
reqd =0 reqd = 1 reqd =2 reqd = 4

Fig. 1. Reservation within TTurgent.

4 Adaptive Model

The TTS and total capacity, and the actual method of scheduling, determine the per-
formance of a scheduling approach. To cope with uncertainty in patient arrival, an ad-
ditional surplus of capacity above the expected number of urgent and clinic patients
must be available. This allocation of capacity in the TTS must be dynamically managed
for maximum efficiency. We propose a three-part approach to scheduling and calendar
adjustments, to best fit the calendar to current and future situations. Our approach is
adaptive to, first, the current (partly filled-in) calendar, and second, the current expecta-
tion of the arrival of patients and their attributes.

Adaptive Urgent Scheduling Method To schedule urgent and clinic patients on time,

the allocated capacity must be large enough. Patients with diffenextwiNs use

the same type of slots: urgent with (0,1); (0,2); (0,3) use TTurgent; clinic with (0,1);

(0,2) use TTclinic. In practice, hospital schedulers do not distinguish between different

PLANWINS; less urgent patients are regularly scheduled in place of high urgency ones.
To counter this problem we virtually divide urgent capacity while scheduling, by

making reservations for differemLANWINS. Within the slots for TTurgent we make

reservations (R)R(TTurgentfg’ql(g), R(TTurgentig}IQ(l)), and R(TTurgent(rgf;), for
all reqd (reqd is the request day of the patients relative to toddy { is tomorrow,
etc.). To make sure patients are scheduled on time, these reservations are placed on
the last day of theLANWIN: R(TTurgent"")) on day 1,R(TTurgent"?) on day

2, etc., see Fig. 1. The same is done for clinic patients: within TTclinic reservations:
R(TTclinicig’qu) and R(TTclz‘nicﬁi’f;) are added for allegd. Note that since there

can be no reservations on weekends, a large number of reservations are made on Friday;
in practice, a corresponding large capacity allocated to urgent patients is found.

Given these reservations, patients are scheduled in first come first serve order, as
long as enough timeslots are still available for patients with higher urgency (smaller
PLANWIN). Algorithm 1 describes this method for urgent patients. We use a similar
algorithm for clinic patients within TTclinic.

By dividing the total capacity as above, we also increase the variance in its usage.
To deal with possible occurring problems, we allow for a reservation violation only if
the patient is not scheduled on time otherwise. Specifically, in that case the patient is
scheduled to the day within hiLANWIN with the most available timeslots regardless
of reservations, see Algorithm 2 for urgent patients. We use a similar algorithm for
clinic patients. This method makes the capacity division by reservations more flexible.
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Algorithm 1 Reservations for urgent patient within TTurgent.
1: pisthe current to be scheduled patient at day 0
2: R(TTurgent; , is the number of TTurgent slots reserved for patients WitANWIN pw
and have a request daterafyd.
: FREE(TTurgentq) is the number of free TTurgent timeslots on day
. T'S is the first available timeslot within TTurgent
¢ if planwin == (0,2) OR planwin == (0, 3) then
if (1'Sis on day 1) AND ¢ REE(TTurgent,) < R(TTurgent'",)_;) then
TS =the first available TTurgent timeslot after day 1
¢ if planwin == (0,3) AND T'S is on day 2 AND
(FREE(TTurgents) < R(TTurgent,(ﬂz;j:l + R(TTurgent(TZ’;i:O) then

TS = the first available TTurgent timeslot after day 2
10: schedule toT'S

0N UAW

©

Algorithm 2 Additional steps to insert between line 9 and 10 in Algorithm 1.
1: if T'S is outsideplanwin then
2: D is day withinplanwin with most free TTurgent slots
3: if FREE(TTurgentp) > 0then
4: TS = the first available TTurgent timeslot on day D

Managing Urgent Capacity In the previous section we discussed how use reserva-
tions in scheduling urgent and clinic patients. If timeslots within the reservations are
not used, these could be made available for other groups. In our approach we dynam-
ically manage the surplus capacity allocated to deal with uncertain patient arrival. In
general, to maintain high MSL, we can shift capacity between the groups urgent, clinic,
and out+ivc. At the start of each day, the total surplus capacity is reallocated between
groups, by the following four steps:

1. Change all remaining free TTout capacity of day 0 and 1 into TTurgent.

2. Change free TTurgent capacity on day 0 and 1 above the reservations into TTclinic.

3. Change free TTclinic capacity on day 0 and 1 above the reservations into TTurgent.

4. Iffree TTurgent capacity onday 0, 1, and 2 is above the capacity of the reservations,
this amount of timeslots on day 2 is changed into TTout.

By using this specific order, capacity can be shifted between the three types of TTS.
Empty slots of type TTout on day 0 and 1 — which can not be used by out+ivc patients
(they have @LANWIN of (2,14)) — can result in extra TTout timeslots on day 2.

Adjusting Opening Hours In busy periods, when the total demand reaches or exceeds
resource capacity, waiting time can increase rapidly. With a little extra capacity this can
usually be avoided. In addition to the adaptive scheduling method described above, we
can use a directed search method on our Patient Scheduling Simulator (PSS) to find the
required opening hours (OH) for a given desired MSL.

5 Experiments

We compare the performance of our fully adaptive approach to benchmark approaches
with various levels of adaptivity. We conduct computer experiments to evaluate our
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Table 5. Reservation sizes (expected Taple 6, Average performance with 41h15min
n.o. patients). openings hours per week.

TTurgent|TTclinc[TTclinc approach [perf. (MSL) [cap. usage]
planwin|all days |mon, fri|tue, wed, thli |[FCRS static calenda®.77 £0.24 [0.90 £0.04
01 [3(1.6) 4 [2(D Reservations 0.80 £0.27 [0.90 +0.04
0,2) [2(1.6) [2(2 [1(1) Flexible Reservation8.83 £0.27 |0.90 £0.04
(0,3) 2 (1.6) Fully Adaptive 0.94 £0.15 |0.91 £0.04

[FCRS static, +2,5h [0.93 £0.15 [0.86 £0.04]

adaptive optimization of the scheduling process. In PPS simulations, realistic problem
runs are generated. We average performances over 40 runs. Within each run patients
arrive during 20 weeks. To avoid start-up effects, we start with a partially filled-in cal-
endar, and measure average performance (MSL) over the last 10 weeks. We use a TTS
optimized for an average arrival of patients. In this TTS, therel&r&Tclinic time-

slots reserved for an average of 344{ clinic patients per week. There &8¢ TTurgent
timeslots reserved for an average26f(+8) urgent patients per week. Note that patients
also arrive randomly during the week.

In various experiments, we have determined the best sizes of the reservations, see
Table 5. The shortest planning window needs the most surplus, and patients with lower
urgencies can also make use of this surplus (as a result from Alg. 2). First we show
results for scheduling methods and adaptive management of urgent capacity, for fixed
openings hours. Secondly we show how opening hours can be adjusted to maintain high
MSL or increases resource usage.

Fixed capacity In Table 6 we present the average performances for four approaches.
The first benchmark is the baseline approach using FCRS for all patients, with a fixed
resource calendar. This resembles the practical case where the calendar supervisor is
absent. The second benchmark is the baseline plus the reservation blocks of Alg. 1.
The third benchmark uses flexible reservations (Alg. 2). We compare this with our fully
adaptive approach, that additionally manages the urgent capacity. For baseline perfor-
mance to match our adaptive approach, 2.5 hours per week openings hours are required.

Adaptive opening hours When more patients arrive than expected, waiting time in-
creases exponentially. Adding extra capacity temporarily can prevent this from happen-
ing. Our approach can then propose OH changes to resource managers to maintain high
performance. In the following experiment we study a specific scenario of 16 weeks
with a short busy periodh,, = 200jw < 4,n,, = 300|6 < w < 11,n,, = 250jw =

5,w > 12. In Fig. 2 we show the performance (averaged over 10 runs) of the base-
line approach with fixed OH, our fully adaptive approach with fixed OH, and our fully
adaptive approach with variable OH. We also plot the extra OH (in minutes) used by
the fully adaptive approach with variable OH.

It is clear that a busy period would result in a great decline in performance for the
baseline approach. Our fully adaptive approach with fixed OH does decline in perfor-
mance but reaches good performance quickly after the busy period. The fully adaptive
approach with variable OH can adjust the OH such that high performance is maintained
over all weeks. Summed over all 16 weeks, it uses almost the same amount of OH as
the approaches with fixed OH.
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realized extra OH

—A— FCRS + fixed OH
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@ 5 in minutes
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weeks (busy period from week 6 untill week 11)

Fig. 2. Performance over weeks with variable and fixed OH.

6 Conclusions

We presented a detailed model for the CT-scan scheduling practice at the AMC. This
case has similar scheduling problems as other places in the hospital. We describe how
the resource calendar is structured and how various patient groups with different levels
of urgency are scheduled. The resulting Patient Scheduling Simulator enables us to
model various scenarios and to evaluate different allocation and scheduling approaches.

We developed an adaptive approach to the scheduling process and resource calen-
dar management. We showed that this enables us to effectively schedule patients with
different urgencies and make efficient use of capacity. By dynamically managing sur-
plus capacity, overall, all patient groups benefit. In current practice this task requires
constant attention and is critically dependent on the expertise of the calendar supervi-
sor. Additionally we have shown that we can adjust the opening hours automatically to
maintain high service levels. This is an important contribution, because currently it is
very hard to determine when and by how much capacity should be extended or reduced
to achieve certain patient service levels.

We are currently extending the presented work to cases where appointments must
be coordinated between multiple departments, and we are looking into incorporating
more patient preferences into appointment scheduling.
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