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Abstract. Efficient scheduling of patient appointments on expensagmurces
is a complex and dynamic task. A resource is typically useddweral patient
groups. To service these groups, resource capacity is aftecated per group,
explicitly or implicitly. Importantly, due to fluctuation& demand, for the most
efficient use of resources this allocation must be flexible.pAésent an adaptive
approach to automatic optimization of resource calendarsur approach, the
allocation of capacity to different patient groups is fldgiland adaptive to the
current and expected future situation. We additionall\sene an approach to de-
termine optimal resource openings hours on a larger timedra&ur model and
its parameter values are based on extensive case analyses AMC hospital.
We have implemented a comprehensive computer simulatidheo&pplication
case. The results of our simulation experiments show thagpproach can ef-

fectively schedule patients groups with different atttésiand make efficient use
of capacity.

Key words: patient scheduling, capacity planning, dynamic optinigtsimu-
lation

1 Introduction

High patient service levels are becoming increasingly irtgrd in the hospital. At the
same time, the demand for health care is increasing and, amorenore patients must
be treated with the same limited capacity and budget. Hifjhieficy on resources
is necessary to provide patients with high quality careuditlg short access times. To
this end, improvements on all levels of hospital operationst be made, from strategic
innovations and adjustments, to improved day to day scivegl[#].

Efficient scheduling of patient appointments on expensdgdurces is a complex
and dynamic task. Traditional approaches to logisticalrowement for increased effi-
ciency are usually not easily applied to the medical domlaipatient scheduling, we
have to consider that hospital resources are many: rangng€T and MRI scanners,

* A preliminary version of this paper has appeared as [1]
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to hospital beds, to attending staff, to operating roomsadlieve a high hospital-
wide patient throughput, local resources must maintaintsmress times. For some
resources, this is a more complex problem than for otheuress.

A resource is typically used by several patient groups wiiflerént properties [3].
Groups can be distinct based on referring departmentstiémts (admitted to the hos-
pital) or outpatients (not admitted), medical constraiatsd level of urgency [4]. To
allow different norms on what is an acceptable access tim@atéent group, hospital
resource capacity is allocated per group, explicitly orlicily. However, due to varia-
tion in demand, determining the optimal allocating is a ctaxproblem. Importantly,
to achieve the best performance, this allocation must bardjan

We study the case of scheduling Computer Tomography scahsq&hs) at the
radiology department within the Academic Medical Centresfendam (AMC). Diag-
nostic resources such as the CT-scanners are literallyatémtthe clinical pathways
of many patients. Long access times to such resources arediataly felt as bot-
tlenecks for health care processes in the hospital. In te@ars the whole logistical
process around the CT-scan in the AMC has already improviestautially [5]. The
actual scheduling of appointments is (still) done by humamedulers: they select a
timeslot on the resource calendar for each patient, givest¢heduling restrictions due
to the allocation of capacity. There is often a lack of ovenwbn how these low-level
scheduling decisions influence overall performance.

A calendar supervisor determines a long time in advance boalldcate scanner
capacity, based on experience, future expectation, anddperation with medical ex-
perts. Often, the actual realization of patient arrivalesloot match the allocation,
which results in inefficient use of the capacity and/or longess time for patients. This
fact is well known from general queuing theory: a static @dlion of capacity will in-
crease variability and can reduce resource efficiency. treoti practice, the calendar
supervisor can counter such problems by manually adjustegalendar to adopt the
allocation of capacity to variability in demand as best assgae. With constant active —
and time consuming — supervision of the calendar, the sdingdand adjustment prac-
tice performs satisfactory. However, making good adjustsiés critically dependent
on the supervisor’s expertise: even a short vacation arsirof the calendar supervisor
leads to immediate and significant deterioration of theussmefficiency. Additionally
it would take a long time to train a new calendar supervisdhwimilar capabilities.
From a planning and sustainability perspective, this ifilyignsatisfactory.

As our main contribution, we present an adaptive approactutomatic optimiza-
tion of resource calendars. In our approach, the allocaticapacity to different patient
groups is flexible and adaptive to the current and expectedldisituation. To main-
tain high performance levels, our approach shifts cap&etween different urgent and
non-urgent patients groups. It does not require any resdingcbf patients, or a pool of
on-call patients to fill in empty timeslots. Our approacht#es the calendar supervisor
to quickly implement calendar adjustments, and anticipaa@d remedy — the impact
of current demand trends to future resource efficiency, dsaseassess the impact of
possible changes to the calendar. Additionally, we preaardpproach to determine
optimal resource openings hours on a larger time frame. i@gdmurs can be reduced
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to increase capacity usage while maintaining high perfocedevels, or extended to
counter increasing access time.

We extensively evaluate our adaptive approaches in a pragisulated environ-
ment. Our model and its parameter values are determineddkt@msive case analysis.
Sources include historical data and extensive discussitmexperts at various lev-
els in the organization. We evaluate with a comprehensivepcer simulation of the
application case. This additionally allows us to study easi problem scenarios and
scheduling approaches. Due to the complexity of our prooesdel, queuing theory
[6] cannot provide analytical answers, and modeling thélem as a Markov decision
problem [7] results in a state space of unsolvable size.

In the next Section, we will discuss the problem and our castysn more detail.
In Section 3 we will present our simulation model built basedour case study. Our
adaptive patient scheduling approach is presented inddestiWe present the results
of our experiments in Section 5. We discuss related work oti&e 6, and conclude in
Section 7.

2 CT-scan Scheduling Model

In this Section, we define our CT-scan scheduling model. RienAMC electronic
calendar systefpwe have collected the historical data of the appointmeraidarrom
October 2005 until March 2006. We have complemented thik ditta from actual
production of CT-scans (November 2005 until January 20D@jing this period, some
scans were taken without an appointment. We derive thematieival process, patient
attributes distributions and scheduling practice frors thata as well as from site-visits
and extensive discussions with the human schedulers, taiedza supervisor, and re-
source manager.

Our case consists of three main parts, discussed in thevialipsections. One part
is the arrivingpatients that need to be scheduled for a specific scan. Secondly, we
describe the available resources, and the way the assbepmintmentalendar is
structured. The third part is theehedulingprocess that determines how appointments
are made by assigning patients to timeslots on the calendar.

2.1 Patients

An important issue is that there is a great variety in pasiemtd scan attributes. We
make the abstraction that a patient always needs to be deldefdu exactly one CT-

scan. We therefore model the patient and his/her scan agyawhich we from now

on refer to as 'patient’. The patient attributes most imaottare listed in Table 1. We
make an abstraction from a patient’s physical arrival timeé eonsider the request time
of when the actual request for a CT-scan is made. Medicébati®rs include whether the
patient is admitted to the hospital or not (inpatient veisutpatients), which has influ-
ence on the duration of the appointment needed. If a patie@ds to be injected with
intravenous contrast (ivc) before the scan can be takengc@®mdmust be present. The

3 X/CARE, McKesson



4 I.B. Vermeulen et al.

urgency, or acceptable access time, is expressed with aiptawindow PLANWIN) in
which the appointment must be scheduled.

Table 1.Patient attributes

attribute description |
request time date and time when request for CT-scan is made
in-/outpatient is the patient admitted in the hospital?

contrast needed?{ivc) does intravenous-contrast need to be injectgd?
planning window PLANWIN)|expresses urgency of patient.

duration of the needed appointment

Table 2. Patient groups

group urgency|PLANWIN (fraction) duration |[size(%)
ouT+ivc [normal [(2,14) 15mins [52% + 6%
ouT—vc [normal |(2,14) 15mins [23% =+ 4%,
URGENT |high  [(0,1)(33%), (0, 2)(33%), or (0, 3)(33%)|15 mins  |10% + 3%
cLINIC  |high  |(0,1)(40%),or (0, 2)(60%) 30mins  [6% + 2%
SPECIAL, |N.a. n.a. duration,|9% =+ 2%

We structure patients and their attributes in differentguatgroups. Table 2 lists
these groups and their specific properties. The group sigiés relative to the total
number of patients, with its variation between weeks. Tlggseps are defined based
on the groups used in practice and a medical and schedulirspguive. Based on
all their attributes, patient can be grouped in many difiergays. Patient group def-
initions can be unclear or incorrect in practice, which canse a negative effect on
efficiency. Defining the correct groups is important for édficcy, and finding the best
definition of groups can be a complex problem. In our definitib patient groups, the
most important attributes are medical constraints, andnag We additionally consid-
ered the compatibility with the current schedule procedutbe hospital, aggregating
theURGENTandcLINIC groups for instance, would require additionally changehén
instructions for the human schedulers.

The largest group ©uT+IvC — is comprised of non-urgent outpatients who need
intravenous contrast (ivc). Non-urgent outpatients whaatmeed intravenous-contrast
are in the grouppuT—IvC. All urgent outpatients form the grouprGENT. The fourth
group —CLINIC — consists of all inpatients.

Besides these four groups, there are a humber of smalldryhégecific groups:
SPECIAL,. These include patients taking part in special programd, patients who
need a very specific treatment for making a CT-scan. E.g.,speeial group is the
group of patients, usually children, who need to be sedateldwwmnaking the CT-scan.
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Urgency of patients is defined in terms of planning windomrsafNwiN) with dif-
ferent sizes. Besides medical urgency, a planning windew expresses the norm on
acceptable access time. These norms are indicators, usedltmte and compare hos-
pitals on a national level. In the AMC the norm for non-urgeutpatients is two weeks:
ouT+ivc andouT-vc have a planning window of2, 14), which means that the ap-
pointment must be scheduled betwetays and 4 days after the request for the scan
is made. The planning window starts from daguch that outpatients do not have to
return to the hospital within a day, but have some time to giiargs around the appoint-
ment at home or work. Urgent outpatientsRGENT) and inpatientsgLINIC) have high
urgency. They can be planned from the request 6ayapd have varying due-date of
either1, 2, or 3 days after the request date. Patients from special group®dbave
specific planning windows and are always scheduled to thieafualable timeslot of
matching type. In our model, we do not consider patients witlrgency of less than
one day, or those that need to be scanned immediately widoaippointment. For
these patients there is an additional CT-scanner avaiialtee emergency room of the
AMC.

2.2 Resource Calendar

Patients must be scheduled to a timeslot on the calendatotdleesource capacity is
given by the number of actual CT-scannergfor the radiology department at the AMC
m = 2) and the opening hours. It is not allowed by the hospital taergppointments

on the CT-scanner in the emergency room, we therefore daalide this resource in

our model.

The resource calendar used in practice is a grid of timeslorying sizes. Re-
strictions on the scheduling of patients are enforced byhohegfiblocks of timeslots of
a specific type. Timeslots of different types are used diffily. In this way, resource
capacity is allocated to patient groups. An initial allecatis determined months in
advance, based on historical data and hospital policy.t3aon adjustments of this
allocation are currently done manually by the calendaestigor if problems occur.

We model a standard calendar, structured in days and weké&giriie on the calen-
dar is partitioned into timeslots of different sizes. Athéslots have a size of a multitude
of the time unittu. (on the CT-scan calend&s is 15 minutes, and there are timeslots
of sizes *u up to 4u.) The parameters in Table 3 define the resource calendar. The
parametersn andtu are fixed for long periods, the other parameters can be cdange
dynamically. Adjustments to the openings hours must be knatleast one week in
advance to plan staff. In general we assume thattletual resources are interchange-
able.

Timeslot Type Specification CT-scan capacity is allocated to different patients groups
and these allocations serve medical restrictions (e.gtalpesparation constraints for
narcosis), as well as a scheduling goal (e.g. reserve titsefslr urgent patients). The
allocations include: three timeslots are reserved on alr3day mornings for patients
from a SPECIAL, group, who need to be sedated while making the CT-scan;glurin
lunch time, radiologists schedule meetings and other iieBy thereforeouT+IvC
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patients, who need to be injected with intravenous contoasthich a radiologist must

be present, cannot be scheduled during lunch; in the afternbevery day a number
of timeslots is reserved farRGENT patients, such that urgent CT-scans ordered during
the day can be performed on the same day as much as possible.

Table 3.Calendar parameters Table 4. Timeslot Types
parameter|description Timeslot-Type|allowed patients  |size
m number of resources TTout OUT+IVC, OUT-IVC,|1tu
0j.d opening time of URGENT

resource jon day d TT-ive OUT-IVC, ltu
Cj.d closing time of (during lunch) [URGENT (no ivc)

resource j on day d TTurgent URGENT ltu
tu unit size timeslots TTclinic CLINIC 2ty
TTS timeslot type specificatign TTspecia), SPECIAL, 1-4tu

We model this allocation by using a timeslot-type specificatTTS). A timeslot-
type specifies which patient can be scheduled to a certagston(Table 4). The TTS
thus determines how much of the resource capacity is a#ddat the patient groups.
See Figure 1 for an example TTS in the CT-scan resource aasdised in practice.
The TTS is not necessarily fixed as the capacity allocatiorbeadynamically altered.

The TTspecig| type of timeslots can only be used by very specific types oépts.
For each TTspecigltype there is a rule which states that if there are still asg Blots
remainingr,, days in advance, these slots are changed to TTout type dflttseto not
waste the capacity otherwise. This rule is currently thg antomatic TTS adjustments
in operation at the hospital.

2.3 Scheduling

Patient scheduling is the process of assigning patienisastots on the calendar thus
setup, i.e. making appointments. In the case we describeglements influence overall
scheduling performance: first, how well the TTS matches theed patient arrival, and
second, the used scheduling method (the selection of altitr@esr patient given the
TTS).

As in many hospitals, the actual scheduling of appointmémt€T-scans is done
manually in the AMC. Requests arrive either by telephond@arequest form. Patients
are scheduled in turn by human schedulers, who look at tieedalt for the availability
of a suitable slot, or use the search function of the elettroalendar system. The
search function returns a list of the first available sugabheslots. For urgent patients
the search function is usually not used, instead, the sédiesdook at the first few days
of the calendar and select a free timeslot by hand. Oftendhgh schedulers deviate
from the offered list for non-urgent patients as well. Thay take a patient’s personal
attributes into account, including a patient’s preferefecg. for a specific day, or time).
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monday tuesday wednesday thursday friday
CTl CT2 CTl1 CT2 CTl1 CT2 CT1 CT2 CT1 CT2

8:30
[ ou
T
u | TTurgent
- TTclinic
12:30 - TTspecial
- staff break
14:15
u u
u u
16:45 u u u u u u u u

Fig. 1. Example TTS (capacity allocation) on CT-scan calerst.

3 Simulation

Based on the case study we have implemented a patient stigedirhulation, see
Figure 2. We use the simulation in the evaluation of diffeissheduling and capacity
allocation approaches. The case inputs of our simulatiodainare based on the case
we studied in the previous Section. These elements togefitieiour adaptive model
(Section 4) are the inputs of our simulation. We discuss tammarts of our simulation
in more details next.

3.1 Patient Arrival Simulation

With our model of patient properties and the distributiomergatient attributes (Table
2) derived from analyzing the historical data, we can siteuthe stochastic arrival

process of patients. To simulate the stochastic arrivadge®, including trends where
some periods of weeks are busier than others, we model théetuof patients per

week by means of a random walk.
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Fig. 2. Overview of Hospital Patient Scheduling Model.

A standard random walk with a drift towards the average fits the distribution
over the number of patients arrivals per week. The numbertépts for next week
(nw-1) is determined as a function of the current patient arrivalss:

. — Ny
Nw+1 = Ny +N(070) + . )

whereN (0, o) a normally distributed fluctuation of patient arrivals. Wa: & = 250,
ng = 7, o = 30, andr = 3.

Furthermore, arrival of patients within the week is stoticasimulating that some
days have more arrivals than other days. Because of extralsdior CLINIC patients
on Monday and Friday, patient arrival is slightly structicuring the week. On Mon-
day and Friday, twice as many requests for CT-scansLafiic patients are ordered
compared to the other three weekdays. Request for urggpatberts arrive following
a uniform distribution over the week. Because of the retasmall number ctbRGENT
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andcCLINIC patients there can occur a large difference in number ofasrbetween
days. Non-urgent outpatient have a planning window of tweksge their arrival dis-
tribution over the week is of little influence on performanee assume that request
arrivals for these non-urgent outpatients follow a unifaistribution over the week.
The resource is closed on Saturday and Sunday, appointfoeBGENTandCLINIC
patients requested on a Friday witiraanwIN of (0,1) or (0,2) must be scheduled the
same day.

3.2 Resource Calendar

In our simulation, we use a resource calendar, which is joaht the same as the
calendar used in practice. Opening time on the calendar3i3, 8vhile the resource
closes at 16:45. The TTS used (which defines the capacitgaaitm) is set such that
there is no other TTS with a better performance given thehststic patient arrival and
optionally an adjustment method. The best initial TTS wasmheined experimentally.

3.3 Scheduling

In our experiments, we want to simulate current schedulirggtre to evaluate it in
scenarios different from current practice. In current sichieg practice there is consid-
erable variation in the rules for selection timeslots. @fatient preferences and other
considerations are taken into account while selectingdiate. We define a schedule
method that simulates this in the following way:

First Come Randomly Served (FCRS Patients are scheduled in order of arrival. A
patient is assigned to a timeslot within his planning windmmdomly selected from
all the free timeslots of allowed types in his planning winddf there are no free
timeslots, the first free timeslot after the planning windewelected.

For URGENT andCLINIC patients, patient preferences are of little importance be-
cause they have a high urgency. However due to the mix of aygeithin URGENT
andcLINIC patients, which often the human schedulers do not take odoumt, these
patients are also scheduled randomly to allowed timestotkd planning window. In
Section 4.1 we discuss a dynamic approach to the scheduling@ENT andCLINIC
patients.

3.4 Performance Measure

Our performance measure expresses that patients mustdduseth within their plan-
ning windows. As a performance measure per patient groupakeethe percentage of
patients scheduled on time (within their planning windowg call this percentage the
service level (SL) of the group. This is a typical performaimdicator in the hospital. It

is important that each grou@ has a high service level. Hospital policy determines the
importance of each group in the overall scheduling objectiin discussion with hos-
pital experts at the AMC, all groups were given equal weigaisl the lowest service
level between groups, the most indicative of a departmeetrformance. We therefore
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define our objective to maximize the minimum service leveB5(l of the four main
groups of Table 2:

MSL — mén <|pat|ente G= ontlmq> ,

|G|

where ontime is defined as scheduled within the planning evindf the patient. In
our AMC case study, groups with higher urgency are also ofllemsize, while all
groups have equal weight in MSL. Therefor, to maximize panince, it is often more
important to schedule a single urgent patient on time thas tib schedule a single
non-urgent patient on time.

4 Adaptive Model

In the hospital, the allocation of capacity, through the ©RShe resource calendar, can
be separated in different timeframes:

1. Long term (months): the initial overall allocation is elehined, based on long-term
expectations of patient arrivals and hospital policy.

2. Medium term (weeks): adjustments can be made for knowmdwgvents, e.g. hol-
iday periods, additional workload, or planned maintenasfdee machines. These
adjustments could include adjusting the openings hourptimize performance.
(In some initial experiments, we observed that adjustirg dlocation weekly,
based on the realization of patient arrival, had a limitédatf)

3. Short term (days): small adjustments to the allocatiemaade daily, based on the
realized and expected patient arrivals.

In our research, our focus is on an adaptive approach fot stwn adjustments.
Additionally we look at medium term adjustments of openiogits. We discuss these
in turn next.

4.1 Short-term adjustments

Our short-term adaptive approach consists of two partshadiding method, and a
method for adjusting capacity between patient groups. napproachuURGENT and
CLINIC patients are scheduled by taking the expected number afmpatirivals per
day and their specific planning window into account. Secgva use the expectation
values to compare available capacity with needed capasith@first three days, and
change capacity between groups.

Adaptive Urgent Scheduling To schedule urgent and clinic patients on time, the al-
located capacity must be large enough. Some patients wiéretit PLANWINS use
the same type of slotsIRGENT with PLANWINS of (0,1), (0,2), or (0,3) use timeslots
of type TTurgent;,cLINIC patients withPLANWINS of (0,1) or (0,2) use timeslots of
type TTclinic. Because of this mix of urgency, there is a ¢radf between scheduling
patients to the earliest timeslots available to not waspacity and keeping timeslots
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open for the possible arrival of more urgent patients. Irrentrhospital practice, hu-
man schedulers do not have an overview to solve this effigiégither too many low-

urgency patients are scheduled in place of high-urgencg on&o much capacity is
wasted).

In our approach, we solve the problem of scheduling patieitts mixed urgency,
by virtually dividing urgent capacity while scheduling: amber of timeslots are specif-
ically reserved for patients with a certanANWIN (for each day of arriving patients).
In Table 5 we show the matrix of reservations®wGENT patients R(TTurgend .25 "™,
for eachPLANWIN and request dayeqd (relative to the current dag). We similarly
define a reservation matrix faLiNIC patients on TTclinic capacity.

Table 5. Reservations within TTurgent type timeslots

request day
PLANWIN 0 1 reqd

©0,1)  |R(TTurgem{V|R(TTurgem*V|R(TTurgeny®?)

reqd

0,2  |R(TTurgem{?|R(TTurgen*?|R(TTurgen} )

reqd

©0.3)  |R(TTurgem?|R(TTurgem " |R(TTurgeny®?)

reqd

The number of timeslots reserved per urgency and arrivalsiag of reservation)
is the expectation of the number of patients and some additgurplus capacity. The
expected number of patients is small for a specific resemvatnd has high variability.
To select which timeslots are reserved, we use the followiggyistic for placing the
reservations over timeslots on the calendar: the resenstire placed on the last day of
the PLANWIN ( R(TTurgen){"") on day 1,R(TTurgen){"* on day 2, etc) see Figure
3. By placing the reservations at the end of the planning mindariability of their
usage is minimized. Note that because the resource is ciogbd weekend, a large
number of reservations is positioned on Friday; this cquesls to practice, where on
Fridays a large capacity is allocateddeGENT andCLINIC patients.

Given the reservationsRGENT patients are scheduled first come first serve (FCFS),
to a timeslot either not reserved or reserved and matchimgdtient’s entry-date and
PLANWIN. To make this method more flexible and reduce utilizatiomelmality, a reser-
vation violation is allowed if the patient is not scheduledione otherwise. Specifically,
if there are no allowed timeslots available in the patieptaning window, the patient
is scheduled to the day within hiseANWIN which has the most available timeslots
regardless of reservations. We call this scheduling witkilile reservationKlexRes,
see Algorithm 1. We use a similar algorithm for schedulingnic patients to TTclinic
type timeslots.

Adjusting Capacity In the previous section we discussed how we use reservations
of timeslots in schedulingrRGENT andcLINIC patients. Crucially, if timeslots within
the reservations are not used, these could be made avdibatdéher groups. In our
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Al

Igorithm 1 FlexRes: Scheduling with Flexible Reservations forRGENT patients.

1: pisthe current to be scheduled patient at day 0
2: R(TTurgend; 4" is the number of TTurgent slots reserved for patients withNwIN and

have a request date oéqd.
: FREE(TTurgen), is the number of free TTurgent timeslots on day
TS = the first available TT urgent timeslot
¢ if PLANWIN == (0,2) ORPLANWIN == (0, 3) then
if (T'S is on day 1 ANDFREE(TTurgen); < R(TTurgenyg’qlgzo) then
TS =the first available TTurgent timeslot after day 1
. if PLANWIN == (0,3) AND T'S is on day 2 AND
(FREE(TTurgen), < R(TTurgen)®))_ + R(TTurgen)®?)_  then

reqd= reqd=0

9: TS =the first available TTurgent timeslot after day 2
10: if T'S is outsidePLANWIN then
11: D is day withinPLANWIN with most free TTurgent slots
12: if FREE(TTurgen)p > 0then
13: TS = the first available TTurgent timeslot on day D
14: schedul@toT'S

Al

gorithm 2 Dynamic: Adjusting capacity between patient groups.

1:
2:
3:

SANE

~N o

change alFF REE(TTout); (on day 1) timeslots into TTurgent

if FREE(TTurgen); > R(TTurgen)"") then
change FREE(TTurgen); — R(TTurgenb(()O’l)) number of TTurgent timeslots into
TTclinic

if FREE(TTclinic); > R(TTclinic){"" then
change FREE(TTclinic); — R(TTcIinic)(()O’l)) number of TTclinic timeslots into TTur-
gent

: CHSLOTS = ¥,_, FREE(TTurgen), — 3°,, R(TTurgeny %,

change fuin(FREE(TTurgen),, CHSLOTS) number of TTurgent timeslots on day 2

into TTout
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today: d=0 d=1 d=2 d=3 d=4
R('I'I'urgent):;d):0 R('I'I'urgent)‘,:;d)=l
R(TTu rgent)',Z;;):D R(TTu rgent)(,g;f;=1 R(TTu rgent):z;fd):z

g B 3 (0,1)
R(1'I'urgent)£2ql,,)=° R(‘I'rurgent):gqld)=1 R('I'I'urgent):qld’=2 R(TTurgent)q4-3

Fig. 3. Positioning of reservations within TTurgent.

approach, we dynamically manage allocated capacity to dgteve to stochastic patient
arrival.

To maintain high MSL, at the beginning of the current daycapacity is shifted
(Algorithm 2) between timeslot types on the days that thieinping windows overlap:
on dayl all remaining TTout and TT-ivc capacity is changed into Tgunt capacity; on
day1 capacity can be shifted between TTurgent and TTclinic; ghXdsome TTurgent
timslots can be changed into TTout (see Table 6). Note thediuse Algorithm 1 does
not reserve timeslots on ddy(see Figure 3) shifting capacity between timeslot types
TTurgent and TTclinic on the current days not neccessary in our approach. Because
adjustments are made at least one day in advance, it is seoffi adjust once a day
instead of continuously.

Thresholds for reallocating capacity between timesloesygre based on the reser-
vations discussed above. The goal of the adjustments isllocate capacity, such that
all reservations (which include surplus) can be made withéncapacity allocated per
group. In this step, in order to optimize allocation, reaéinns are no longer necessarily
placed on the last day of the planning window. Any timesldtmeeded for reservation
can be changed into a timeslot of another type.

Table 6. Adjustment of capacity, increased (+) or reduced (-), fdfedent timeslot types and
days (with corresponding line in Algorithm 2)

Day

Capacity Type/0 |1 2
TTout - (1) + (7)
TTurgent + (1), — (3),+ (5)|— (7)
TTclinic + (3),— (5)

4.2 Adjusting Opening Hours

Adjusting the calendar on a medium term time scale, is stiiteceacting to busy pe-
riods, holidays, planned resource maintenance, or inedeasrkload due to additional
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patient programs. Here we focus on adjusting the openingshion quiet and busy
periods, which is important for maintaining short accesgs and high resource and
staff efficiency. This is currently not done efficiently indpatal practice, because it is
difficult to oversee the effect of an adjustment long enoughdvance. In busy peri-
ods, when the total demand reaches or exceeds resourcétgsuamess time increases
rapidly. With little extra capacity this can usually be aleil. Reducing opening hours
in slow periods can compensate increased staff workingshiaususy periods.

Although fixed working hours are still preferred by the sttfere is some flexibility
in the working hours if the changes are known in advance. Vderas that for the
planning of staff, the actual opening hours of the resourastrhe known at least one
week in advance. In our approach we fix the opening time oféseurce, and adjust
the closing time. We set a paramet@f,, which defines the total amount of openings
hours of weekw. Before the beginning of week — 1 we determine the best value for
OH,.

We use a standard bi-directed search method, with a disstegtesize oktepsize,
where performance of different values@#f{,, are determined by a number of simula-
tion runs using our patients scheduling simulator. We $efcthe smallesO H,, that
has an MSL performance of at led3},.. s (preferred performance level). In these simu-
lations we schedule patients arriving over 2 weeks, sineepiening hours are adjusted
for the second week. The current partially filled-in calanalad the estimation on the
expectation of future patient arrivals are used as thdmsggobint of the simulation. We
use the number of patients from the previous weeks, as anastifor future weeks.
Conceivably, we can easily use more specific estimates fowRrholidays etc. When
adjusting the openings hours on the calendar the total H@#&fs are divided equally
over the days.

This approach takes into account that on each day the cldisiegcan not be re-
duced further than the latest appointment already schédutbe partially filled-in cal-
endar. To make it possible to reduce the openings hours &t geriods for increased
capacity usage, a small adjustment to the scheduling méthused: for weeks of which
the opening hours can still be adjusted, patients are pglfescheduled to timeslots
before 3pm, to allow opportunities for earlier closing tsne

5 Experiments

We conduct computer experiments to evaluate our adaptii@ization of the schedul-
ing process. In our simulations, we generate realistic lprotruns. We compare the
performance of our fully adaptive approach to benchmarkagghes. Performances
are averaged over 70 runs. Within each run, patients artiviegl 20 weeks. To avoid
start-up effects, we start with a partially filled-in calandand measure average perfor-
mance (MSL) only over the last 10 weeks of the simulation run.

We use a TTS optimized for a stochastic arrival of patiendpding:

— 18 TTclinic timeslots reserved for an average of #4j cLINIC patients per week,
— 34 TTurgent timeslots reserved for an average2®f(+8) URGENT patients per
week.
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No-shows and machine downtime are not included in simulatims presented here,
these had only a limited effect in our experiments, otherdheating more busy periods
which is captured by our arrival model.

We determined the best sizes of the reservations experithgrgee Table 7 for
the used values in comparison with the expected number amatper reservation.
Because we use patient expectation per request-date artyrgee Table 5) the actual
reservation size is a small number. Determining the optisied of a reservation is
relatively easy due to the discreteness of timeslots. Ttalegt planning window (0,1)
has the least average number of patients and largest Veyiaid therefore needs the
most relative surplus. Larger planning windows (lower majes) have less variability,
and can also make use of surplus capacity reserved for higlgency if necessary
(Algorithm 1).

Table 7. Reservation sizes (expected n.o. patients).
TTurgent|TTclinc |TTclinc
planwin(all days |mon, fri|tue, wed, thu
(0,1) |[3(1.6) |4(2) |2(1)
0,2) [2(1.6) |2(2) |[1(1)
0,3) [2(1.6)

First, we show our main results for short-term schedulinghogs and adaptive al-
location of capacity. Second, we show how opening hours easdjusted to maintain
high MSL or increases resource usage.

5.1 Short-term

We present average performances of three scheduling agh@®avith a static alloca-
tion, and the same three approaches with capacity dyndgnadjusting by the method
presented in this paper. The first benchmark is a baselin@agp using FCRS for
all patients (see Section 3.3). This approach is similah&gractical case in a hos-
pital where there is no staff to adjust the calendar dynalgjaa where the calendar
supervisor is absent due to illness of vacation. The secendhmark is the standard
scheduling rule First Come First Serve (FCFS), which otéwiresource efficiency but
does not consider any stochastic element in the schedulooggs. The third approach
is our scheduling method felRGENTandcLINIC patient based on flexible reservations
(FlexRes), Algorithm 1. All three approaches are evaluaitith either a static calendar
or in combination with our approach to dynamic adjustmeffitsapacity (Dynamic),
Algorithm 2.

We present the results of three different scenarios for theber of patients arriv-
ing per week:n,, is given by a random walk (see Section 3.4), is constant with
n, = 250, andn,, is constant withn,, = 270. The average performances (MSL),
standard deviation (stdv), and average capacity usagefeyresented in Table 8. We
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additionally compare performances to the baseline appr{fa€CRS with static calen-
dar) with an additional capacity of 2.5 hours per week (6%eegapacity).

Table 8.Performances (MSL) averaged over 70 runs, with standardti@v (stdv.) and average
capacity usage, for three different scenarios, given 4t ®penings hours per week.

Random Walk
Approach: performance MSL |stdv.|cap.usage
FCRS static 0.79 0.19] 0.91
FCFS static 0.78 0.25| 0.93
FlexRes static 0.77 0.24] 0.91
FCRS Dynamic 0.88 0.14| 0.91
FCFS Dynamic 0.88 0.10| 0.93
FlexRes Dynamic 0.96 0.07| 0.91
FCRS static + 2,5h 0.96 [0.03] 0.86

Constant 250
Approach: performance MSL |stdv.|cap.usage
FCRS static 0.88 0.06| 0.91
FCFS static 0.92 0.05| 0.93
FlexRes static 0.85 0.16] 0.91
FCRS Dynamic 0.94 0.03] 0.91
FCFS Dynamic 0.95 0.02| 0.92
FlexRes Dynamic 0.98 0.01| 0.91
FCRS static + 2,5h 0.97 [0.03] 0.86

Constant 270
Approach: performance MSL |stdv.|cap.usage
FCRS static 0.56 0.16] 0.97
FCFS static 0.28 0.26| 0.97
FlexRes static 0.42 0.29| 0.97
FCRS Dynamic 0.76 0.07| 0.97
FCFS Dynamic 0.68 0.12| 0.99
FlexRes Dynamic 0.93 0.03| 0.97
[FCRS static + 2,5h 0.96 [0.02] 0.92

The results in Table 8 show that our dynamic approach to dgpaltocation in
combination with flexible reservations, has a very high @enfance close to a MSL
of 1.0, even in the busiest (constant with, = 270) and most stochastic (random
walk) scenarios. Even though standard deviation is gelgdrigh, due to the wide range
of problem instances created in our simulation, our dynaapjgroach has the lowest
performance-variability. The performance of FlexRes Dyitais significantly better
than FCRS static (p-value = 10710), FlexRes Dynamic better than FCRS dynamic
(p-value =< 10~%), and FCRS Dynamic better than FCRS static (p-vatue0—*),
using the two-sample Kolmogorov-Smirnov test with sigmrifice leveln = 0.01 for
the random walk scenario.



Adaptive Optimization of Hospital Resource Calendars 17

In the random walk scenario, FCRS with a static calendar haverage MSL per-
formance level 0f).79: of the worst-off patient group only 79% of patients are sthe
uled on time. With dynamic adjustments and flexible res@mgierformance increases
to 0.94: even of the worst-off patient group 94% of patients is sciedion time. The
capacity of the static baseline approach has to be incresige®% to achieve similar
performance as our dynamic approach.

With a static allocation, our scheduling approach with fiéireservation (FlexRes)
achieves performance similar to the scheduling benchmétésever, our dynamic
adjustments approach performs far better in combinatidh RliexRes, than any of the
benchmark schedulers.

5.2 Medium-term

When more patients arrive than expected, access time sesexponentially [6]. Adding
extra capacity temporarily can prevent this from happen®gr approach (Section
4.2) proposes changes in openings hours to resource martagaintain high per-
formance. We show the experimental results for an examplesso of 16 weeks with
a short busy period. The number of patiemisper week in this scenario is given by:

Ny = 200|w < 4,n,, = 300[6 < w < 11,n,, = 250|w = 5,w > 12

In Figure 4 we show the performances (averaged over 10 rfitisg baseline approach
and our dynamic approach with fixed capacity, against ouadho approach with ad-
justable openings hours (see Section 4.2, and the paraet&able 9). We plot the
extra time (in minutes) used by our dynamic approach withistdple openings hours,
per week and averaged over the weeks, in Figure 5.

Table 9. Adaptive approach parameter values.

parameter value
OHgiandara |41 hours, 15 minutes
(from 8:30 till 16:45
stepsize (O H)|30 minutes
Porey 0.95 (MSL)

Itis clear that a busy period results in a great decline ifgperance for the baseline
approach. Our fully adaptive approach with fixed capacitysddecline in performance
but reaches good performance quickly after the busy pefibé. fully adaptive ap-
proach with adjustable openings hours can adjust capagity that high performance
is maintained over all weeks. Summed over all 16 weeks, i litle more than the
total capacity used by approaches with fixed capacity.
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Fig. 4. Performance over weeks with variable and fixed OH.
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Fig. 5. Extra time (in minutes) used, per week and averaged @ weeks.

6 Related Work

There is a number of research fields closely related to ouk vxbuch literature consid-
ers the hospital capacity planning problem on a strategel.l©n an operational level
patient scheduling is researched, either specific schregloliethods or the scheduling
process in hospital practice. Additionally there is workamordination of scheduling
multiple patient appointments and optimizing patient flow.

Capacity planning in hospitals at a strategic level is esitaty studied in the liter-
ature, e.g. [8] [9] [10], for an overview see [2] and [11]. Mepproaches consider the
capacity allocation problem on a strategic level; the altmn is static on the opera-
tional level. Here we focus on short-term dynamic adjustsiemthe initial allocation.

Exceptions to the strict separation of capacity planning eperational schedul-
ing are [12], [13], [14]. However, all three papers only cides allocation capacity
to two priority classes, where we consider multiple priedtwith additional medical
constraints. In [12], the authors similarly consider a €&rsscheduling problem. The
approach assumes the use of a pool of on-call outpatiertsahae scheduled to un-
used timeslots. The results show the benefit of a flexibleagmbr compared to a static
allocation. The work however, does not consider a full salied problem as the au-
thors assume all patient arrivals are known at the beginofiregach day. Furthermore,
the authors use a more abstract case with only two types efvaions and measure
performance in growth rate of access time. In [14] the agtibonsider a model similar
to ours, but focus on optimizing the usage of overbooking @arettime, without dy-
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namic rules for scheduling and capacity allocation. In [1B¢ authors discuss a profit
maximization problem of a MRI scheduling problem for thréssses of patients. Their
more abstract model requires setting specific revenue amaltgdunctions, for which
the authors identify properties of an optimal solutions.

A more abstract approach to capacity planning can also ntikkm a queuing
theory point of view [6]. Although realistic models are toongplex to be analyzed
mathematically, the problem and solutions are relatedrflove rules between queues
can correspond to a dynamic usage of capacity. The definificqqueues and servers
[16][17], corresponds to the problem of defining patientup® and timeslot types.
However, queuing systems do not consider specific timeslatsappointments, and
therefore do not capture the full scheduling problem.

The patient scheduling problem is not solved with optimaleity allocation alone,
the actual method of scheduling determines whether thead capacity is efficiently
used. Scheduling methods are studied for various problepepties and objective mea-
sures, including online problems, for an overview see [Y#}. have partly based our
scheduling approach on insights from scheduling theomgiéipally scheduling prob-
lems with objectives related to MSL. Furthermore, the saliad method can be opti-
mized for other considerations such as minimizing doctar gatient idle time during
the execution of a schedule [19] [20]. Additionally, optiimg the logistical process in
hospital practice can also be largely beneficial for resmefficiency [5] [21].

Short access time to all resources is necessary for higem#étiroughput in the hos-
pital. Optimally coordinating patient paths between reses is an additional problem
[22] [23]. In our approach, the human schedulers are sspoasible for coordination.
Multi-agent approaches seem promising to solve this bigted and dynamic coordi-
nation problem [24] [25] [26], and are part of our currentaash.

7 Conclusions

We presented a detailed model for scheduling multiple patigoups to a hospital
resource. Specifically we presented the details of the @m-scheduling case at the
academic hospital AMC. Short access time to central diggnossources is crucial
for high patient throughput in the hospital. Arriving patie have varying attributes,
including their urgency, corresponding to the group thepg to. Patients are sched-
uled to a resource calendar with capacity allocated pengrohis capacity allocation
must be flexible to achieve high service levels for all groifye have implemented a
realistic simulation of our case study to analyze the prolkéed evaluate approaches.

Given our practical case, model validation is a complexés3ine current practice
and historical data provide only a single instance, anddiffgult to identify appropri-
ate performance indicators for a wide range of settingseRisarganizational changes
in the department limit the availability or usability of tosical data. Additional to his-
torical data, for which the average capacity usage was ttst imdicative, we evaluated
model elements in numerous discussions with hospital éxpéth many years of de-
tailed experience.

We developed a dynamic approach to adjusting the allocatiothe calendar. We
focus on short term adjustments given the current stateeafdlendar and the expecta-



20 I.B. Vermeulen et al.

tion of future patient arrival. We create flexible reservns for patients per request-date
and urgency. Patients are scheduled based on these resesyvand the reservations de-
termine how much capacity can be shifted between differatiept groups. Addition-
ally we use our simulation to determine the best medium-gdjustment of openings
hours for maintaining high service levels, which can ses/praposals to the resource
manager.

The results of our simulation experiments show that our @ggh can effectively
schedule patients groups with different attributes andenedficient use of capacity. By
dynamically adjusting capacity allocation, overall, altignt groups benefit. We have
shown that there is a significant improvement over stati@ciypallocation. In current
practice, adjusting the calendar manually requires cahstdention and is critically
dependent on the expertise of the calendar supervisor.

In our experiments, we focus on measuring the minimum senéeel of patient
groups. This objective expresses the goal of the AMC to hhoe siccess times for all
groups, where short can be differently defined per groupefregal, the objective of our
approach is efficiency of scheduling and capacity usagesBylWFCRS for scheduling
outpatients we simulate the effect of including patienfgmences in the objective.

Many resources in the hospital are used by multiple patiesugs, with different
attributes such as urgency. Implicitly or explicitly, tressource capacity must be allo-
cated to these groups of patients. Our approach can readgtlied to these problems,
given the patient group definitions and parameter valuegefreral, when capacity is
allocated, dynamically adjusting the allocation increaskiciency.

Our approach is on a operational level. Furthermore, ourcgmh matches the cur-
rent schedule procedure in the hospital. An approach thatawes, not replaces, the
current scheduling process is most beneficial. Human séresgas well as doctors, are
used to working with an allocation of capacity. This is imgaatt for flexibility in usage
and acceptance of the system. Furthermore it will not cangelisruptions on existing
coordination with external logistics in other departmeatsd personal schedules. This
is important for user acceptance and fast implementatiotalNy, based on our results,
the AMC hospital has started cooperation with a third-padffware-company to fully
develop our dynamic approach into implementation.

In future work we want to develop our dynamic approach to cepallocation
further. We will focus on a more general method for flexiblagesof capacity, where the
parameters of our approach are fine-tuned automaticallg.Witl coincide with more
case studies at different departments of the AMC. We wikedithe scheduling method
to take patient preferences into account. Based on ouitsdeukfficient resource usage
locally we will also scale the scheduling problem to mukipglepartments and research
mechanisms for coordination between departments.

Acknowledgement We would like to thank Han Noot for his programming contribu-
tions, and Anieke Eikelenboom for all of her expert knowledg

References

1. Vermeulen, |, Bohte, S.M., Elkhuizen, S.G., LameriS, JBakker, P.J.M., La Pouy J.A.:
Adaptive optimization of hospital resource calendars. H&il&zi, R., Abu-Hanna, A.,



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Adaptive Optimization of Hospital Resource Calendars 21

Hunter, J., eds.: 11th Conference on Artificial Intelligerio Medicine. Volume 4594 of
Lecture Notes in Computer Science. Springer (2007) 305-315

. Vissers, J., Beech, R.: Health Operations Managementt/d&ige (2005)
. Maruster, L., Weijters, T., de Vries, G., van den Bosch,Daelemans, W.: Logistic-based

patient grouping for multi-disciplinary treatment. Artifal Intelligence in Medicin@6(1-2)
(2002) 87-107

. Bowers, J., Mould, G.: Managing uncertainty in orthopag¢thuma theatres. European

Journal of Operational Researts4(3) (2004) 599-608

. Elkhuizen, S.G., van Sambeek, J.R.C., Hans, E.W., Kradd®, J.J., Bakker, P.J.M.: Ap-

plying the variety reduction principle to management ofideny services. Health Care
Management Revie®2(1) (2007) 37-45

. Hopp, W.J., Spearman, M.: Factory Physics: The Founasaid Manufacturing Manage-

ment. McGraw-Hill (2000)

. Puterman, M.L.: Markov Decision Processes: Discretet&tstic Dynamic Programming.

John Wiley and Sons, New York (1994)

. VanBerkel, P.T., Blake, J.T.: A comprehensive simufafior wait time reduction and ca-

pacity planning applied in general surgery. Health Care &g@ment Science0(4) (2007)
373-385

. Harper, P.R., Shahani, A.K.: Modelling for the plannimgliananagement of bed capacities

in hospitals. Journal of the Operational Research So&igftl) (2002) 11-18

Bretthauer, K.M.: A model for planning resource requieats in health care organizations.
Decision Science®9(1) (1998) 243-270

Smith-Daniels, V.L., Schweikhart, S.B., Smith-DagjeD.E.: Capacity management in
health care services: Review and future research directi@ecision Sciencet9 (1988)
889-918

Patrick, J., Puterman, M.L.: Improving resource wilian for diagnostic services through
flexible inpatient scheduling: A method for improving resmiutilization. Journal of the
Operational Research Socié&i§(Feb) (2007) 235-245

Gerchak, Y., Gupta, D., Henig, M.: Reservation planfianglective surgery under uncertain
demand for emergency surgery. Management Scié@¢£996) 321-334

Rohleder, T., Klassen, K.: Rolling horizon appointmsaheduling: a simulation study.
Health Care Management Scieref002) 201-209

Green, L., Savin, S., Wang, B.: Managing patient seriice diagnostic medical facility.
Operations Researd# (2006) 11-25

Rothkopf, M.H., Rech, P.: Perspectives on queues: Qunthgueues is not always benefi-
cial. Operations Resear@%(6) (1987) 906—909

van Dijk, N.M.: Making simulation relevant in businegspool or not to pool? "the benefits
of combining queuing and simulation”. In: WSC '02: Proceggsi of the 34th conference on
Winter simulation, Winter Simulation Conference (20025341472

Pruhs, K., Torng, E., Sgall, J.: Online scheduling. Iuhg J.Y.T., ed.: Handbook of
Scheduling: Algorithms, Models, and Performance AnalySRC Press (2004) 15.1-15.41
Ho, C.J., Lau, H.: Minimizing total cost in schedulingjpatient appointments. Management
Science38(1992) 1750-1765

Kaandorp, G.C., Koole, G.: Optimal outpatient appoemnitrscheduling. Health Care Man-
agement Scienck)(3) (2007) 217-229

Kopach, R., DeLaurentis, P.C., Lawley, M., Muthurami@nQzsen, L., Rardin, R., Wan, H.,
Intrevado, P., Qu, X., Willis, D.: Effects of clinical chantaristics on successful open access
scheduling. Health Care Management Sciet@@) (2007) 111-124

Marinagi, C., Spyropoulos, C.D., Papatheodorou, Ckkikitos, S.: Continual planning
and scheduling for managing patient tests in hospital ktooies. Artificial Intelligence
in Medicine20(2) (2000) 139-154



22 I.B. Vermeulen et al.

23. Policella, N., Oddi, A., Smith, S., Cesta, A.: Genemtinbust partial order schedules.
In Wallace, M., ed.: Principles and Practice of ConstraigPamming. Volume 3258 of
Lecture Notes in Computer Science. Springer (2004) 496-511

24. Decker, K., Li, J.: Coordinating mutually exclusive sasces using gpgp. Autonomous
Agents and Multi-Agent Systeng2) (2000) 133-157

25. Paulussen, T.O., Jennings, N.R., Decker, K., Heinzl, Bistributed patient scheduling in
hospitals. In Gottlob, G., Walsh, T., eds.: Proceedinghefighteenth International Joint
Conference on Artificial Intelligence. Morgan Kaufmann @30 1224-1232

26. Vermeulen, |.B., Bohte, S.M., Somefun, D.J.A., La PeuirA.: Multi-agent pareto appoint-
ment exchanging in hospital patient scheduling. Servidger®ed Computing and Applica-
tions1(3) (2007) 185-196



