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J.A. La Poutŕe11 Centre for Mathematics and Computer Science (CWI),

Kruislaan 413, Amsterdam, the Netherlands.2 Academic Medical Center, University of Amsterdam,
Meibergdreef 9, Amsterdam, the Netherlands.

I.B.Vermeulen@cwi.nl

Abstract. Efficient scheduling of patient appointments on expensive resources
is a complex and dynamic task. A resource is typically used byseveral patient
groups. To service these groups, resource capacity is oftenallocated per group,
explicitly or implicitly. Importantly, due to fluctuationsin demand, for the most
efficient use of resources this allocation must be flexible. We present an adaptive
approach to automatic optimization of resource calendars.In our approach, the
allocation of capacity to different patient groups is flexible and adaptive to the
current and expected future situation. We additionally present an approach to de-
termine optimal resource openings hours on a larger time frame. Our model and
its parameter values are based on extensive case analysis atthe AMC hospital.
We have implemented a comprehensive computer simulation ofthe application
case. The results of our simulation experiments show that our approach can ef-
fectively schedule patients groups with different attributes and make efficient use
of capacity.

Key words: patient scheduling, capacity planning, dynamic optimization, simu-
lation

1 Introduction

High patient service levels are becoming increasingly important in the hospital. At the
same time, the demand for health care is increasing and, moreand more patients must
be treated with the same limited capacity and budget. High efficiency on resources
is necessary to provide patients with high quality care including short access times. To
this end, improvements on all levels of hospital operationsmust be made, from strategic
innovations and adjustments, to improved day to day scheduling [2].

Efficient scheduling of patient appointments on expensive resources is a complex
and dynamic task. Traditional approaches to logistical improvement for increased effi-
ciency are usually not easily applied to the medical domain.In patient scheduling, we
have to consider that hospital resources are many: ranging from CT and MRI scanners,? A preliminary version of this paper has appeared as [1]
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to hospital beds, to attending staff, to operating rooms. Toachieve a high hospital-
wide patient throughput, local resources must maintain short access times. For some
resources, this is a more complex problem than for other resources.

A resource is typically used by several patient groups with different properties [3].
Groups can be distinct based on referring departments, inpatients (admitted to the hos-
pital) or outpatients (not admitted), medical constraints, and level of urgency [4]. To
allow different norms on what is an acceptable access time per patient group, hospital
resource capacity is allocated per group, explicitly or implicitly. However, due to varia-
tion in demand, determining the optimal allocating is a complex problem. Importantly,
to achieve the best performance, this allocation must be dynamic.

We study the case of scheduling Computer Tomography scans (CT-scans) at the
radiology department within the Academic Medical Centre Amsterdam (AMC). Diag-
nostic resources such as the CT-scanners are literally central in the clinical pathways
of many patients. Long access times to such resources are immediately felt as bot-
tlenecks for health care processes in the hospital. In recent years the whole logistical
process around the CT-scan in the AMC has already improved substantially [5]. The
actual scheduling of appointments is (still) done by human schedulers: they select a
timeslot on the resource calendar for each patient, given the scheduling restrictions due
to the allocation of capacity. There is often a lack of overview on how these low-level
scheduling decisions influence overall performance.

A calendar supervisor determines a long time in advance how to allocate scanner
capacity, based on experience, future expectation, and in cooperation with medical ex-
perts. Often, the actual realization of patient arrivals does not match the allocation,
which results in inefficient use of the capacity and/or long access time for patients. This
fact is well known from general queuing theory: a static allocation of capacity will in-
crease variability and can reduce resource efficiency. In current practice, the calendar
supervisor can counter such problems by manually adjustingthe calendar to adopt the
allocation of capacity to variability in demand as best as possible. With constant active –
and time consuming – supervision of the calendar, the scheduling and adjustment prac-
tice performs satisfactory. However, making good adjustments is critically dependent
on the supervisor’s expertise: even a short vacation or illness of the calendar supervisor
leads to immediate and significant deterioration of the resource efficiency. Additionally
it would take a long time to train a new calendar supervisor with similar capabilities.
From a planning and sustainability perspective, this is highly unsatisfactory.

As our main contribution, we present an adaptive approach toautomatic optimiza-
tion of resource calendars. In our approach, the allocationof capacity to different patient
groups is flexible and adaptive to the current and expected future situation. To main-
tain high performance levels, our approach shifts capacitybetween different urgent and
non-urgent patients groups. It does not require any rescheduling of patients, or a pool of
on-call patients to fill in empty timeslots. Our approach enables the calendar supervisor
to quickly implement calendar adjustments, and anticipate– and remedy – the impact
of current demand trends to future resource efficiency, as well as assess the impact of
possible changes to the calendar. Additionally, we presentan approach to determine
optimal resource openings hours on a larger time frame. Opening hours can be reduced



Adaptive Optimization of Hospital Resource Calendars 3

to increase capacity usage while maintaining high performance levels, or extended to
counter increasing access time.

We extensively evaluate our adaptive approaches in a precise simulated environ-
ment. Our model and its parameter values are determined fromextensive case analysis.
Sources include historical data and extensive discussion with experts at various lev-
els in the organization. We evaluate with a comprehensive computer simulation of the
application case. This additionally allows us to study various problem scenarios and
scheduling approaches. Due to the complexity of our processmodel, queuing theory
[6] cannot provide analytical answers, and modeling the problem as a Markov decision
problem [7] results in a state space of unsolvable size.

In the next Section, we will discuss the problem and our case study in more detail.
In Section 3 we will present our simulation model built basedon our case study. Our
adaptive patient scheduling approach is presented in Section 4. We present the results
of our experiments in Section 5. We discuss related work in Section 6, and conclude in
Section 7.

2 CT-scan Scheduling Model

In this Section, we define our CT-scan scheduling model. Fromthe AMC electronic
calendar system3, we have collected the historical data of the appointments made from
October 2005 until March 2006. We have complemented this with data from actual
production of CT-scans (November 2005 until January 2006).During this period, some
scans were taken without an appointment. We derive the patient arrival process, patient
attributes distributions and scheduling practice from this data as well as from site-visits
and extensive discussions with the human schedulers, the calendar supervisor, and re-
source manager.

Our case consists of three main parts, discussed in the following sections. One part
is the arrivingpatients that need to be scheduled for a specific scan. Secondly, we
describe the available resources, and the way the associated appointmentcalendar is
structured. The third part is theschedulingprocess that determines how appointments
are made by assigning patients to timeslots on the calendar.

2.1 Patients

An important issue is that there is a great variety in patients and scan attributes. We
make the abstraction that a patient always needs to be scheduled for exactly one CT-
scan. We therefore model the patient and his/her scan as a unity, which we from now
on refer to as ’patient’. The patient attributes most important are listed in Table 1. We
make an abstraction from a patient’s physical arrival time and consider the request time
of when the actual request for a CT-scan is made. Medical attributes include whether the
patient is admitted to the hospital or not (inpatient versusoutpatients), which has influ-
ence on the duration of the appointment needed. If a patientsneeds to be injected with
intravenous contrast (ivc) before the scan can be taken, a doctor must be present. The

3 X/CARE, McKesson
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urgency, or acceptable access time, is expressed with a planning window (PLANWIN) in
which the appointment must be scheduled.

Table 1.Patient attributes

attribute description
request time date and time when request for CT-scan is made
in-/outpatient is the patient admitted in the hospital?
contrast needed? (� ivc) does intravenous-contrast need to be injected?
planning window (PLANWIN) expresses urgency of patient.
duration of the needed appointment

Table 2.Patient groups

group urgency PLANWIN (fraction) duration size(%)
OUT+IVC normal (2; 14) 15 mins 52%� 6%
OUT–IVC normal (2; 14) 15 mins 23%� 4%,
URGENT high (0; 1)(33%); (0; 2)(33%);or (0; 3)(33%) 15 mins 10%� 3%
CLINIC high (0; 1)(40%);or (0; 2)(60%) 30 mins 6%� 2%
SPECIALn n.a. n.a. durationn 9%� 2%
We structure patients and their attributes in different patient groups. Table 2 lists

these groups and their specific properties. The group size isgiven relative to the total
number of patients, with its variation between weeks. Thesegroups are defined based
on the groups used in practice and a medical and scheduling perspective. Based on
all their attributes, patient can be grouped in many different ways. Patient group def-
initions can be unclear or incorrect in practice, which can cause a negative effect on
efficiency. Defining the correct groups is important for efficiency, and finding the best
definition of groups can be a complex problem. In our definition of patient groups, the
most important attributes are medical constraints, and urgency. We additionally consid-
ered the compatibility with the current schedule procedurein the hospital, aggregating
theURGENTandCLINIC groups for instance, would require additionally changes inthe
instructions for the human schedulers.

The largest group –OUT+IVC – is comprised of non-urgent outpatients who need
intravenous contrast (ivc). Non-urgent outpatients who donot need intravenous-contrast
are in the groupOUT–IVC. All urgent outpatients form the groupURGENT. The fourth
group –CLINIC – consists of all inpatients.

Besides these four groups, there are a number of smaller, highly specific groups:
SPECIALn. These include patients taking part in special programs, and patients who
need a very specific treatment for making a CT-scan. E.g., onespecial group is the
group of patients, usually children, who need to be sedated while making the CT-scan.
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Urgency of patients is defined in terms of planning windows (PLANWIN) with dif-
ferent sizes. Besides medical urgency, a planning window also expresses the norm on
acceptable access time. These norms are indicators, used toevaluate and compare hos-
pitals on a national level. In the AMC the norm for non-urgentoutpatients is two weeks:
OUT+IVC andOUT–IVC have a planning window of(2; 14), which means that the ap-
pointment must be scheduled between2 days and14 days after the request for the scan
is made. The planning window starts from day2 such that outpatients do not have to
return to the hospital within a day, but have some time to planthings around the appoint-
ment at home or work. Urgent outpatients (URGENT) and inpatients (CLINIC) have high
urgency. They can be planned from the request day (0), and have varying due-date of
either1, 2, or 3 days after the request date. Patients from special groups donot have
specific planning windows and are always scheduled to the first available timeslot of
matching type. In our model, we do not consider patients witha urgency of less than
one day, or those that need to be scanned immediately withoutan appointment. For
these patients there is an additional CT-scanner availablein the emergency room of the
AMC.

2.2 Resource Calendar

Patients must be scheduled to a timeslot on the calendar. Thetotal resource capacity is
given by the number of actual CT-scannersm (for the radiology department at the AMCm = 2) and the opening hours. It is not allowed by the hospital to make appointments
on the CT-scanner in the emergency room, we therefore do not include this resource in
our model.

The resource calendar used in practice is a grid of timeslotsof varying sizes. Re-
strictions on the scheduling of patients are enforced by defining blocks of timeslots of
a specific type. Timeslots of different types are used differently. In this way, resource
capacity is allocated to patient groups. An initial allocation is determined months in
advance, based on historical data and hospital policy. Short term adjustments of this
allocation are currently done manually by the calendar-supervisor if problems occur.

We model a standard calendar, structured in days and weeks. The time on the calen-
dar is partitioned into timeslots of different sizes. All timeslots have a size of a multitude
of the time unittu. (on the CT-scan calendartu is 15 minutes, and there are timeslots
of sizes 1tu up to 4tu.) The parameters in Table 3 define the resource calendar. The
parametersm andtu are fixed for long periods, the other parameters can be changed
dynamically. Adjustments to the openings hours must be known at least one week in
advance to plan staff. In general we assume that them actual resources are interchange-
able.

Timeslot Type SpecificationCT-scan capacity is allocated to different patients groups,
and these allocations serve medical restrictions (e.g. dueto preparation constraints for
narcosis), as well as a scheduling goal (e.g. reserve timeslots for urgent patients). The
allocations include: three timeslots are reserved on all Thursday mornings for patients
from a SPECIALn group, who need to be sedated while making the CT-scan; during
lunch time, radiologists schedule meetings and other activities, therefore,OUT+IVC
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patients, who need to be injected with intravenous contrastfor which a radiologist must
be present, cannot be scheduled during lunch; in the afternoon of every day a number
of timeslots is reserved forURGENT patients, such that urgent CT-scans ordered during
the day can be performed on the same day as much as possible.

Table 3.Calendar parameters

parameter descriptionm number of resourcesoj;d opening time of
resource j on day d
j;d closing time of
resource j on day dtu unit size timeslots

TTS timeslot type specification

Table 4.Timeslot Types

Timeslot-Type allowed patients size
TTout OUT+IVC, OUT–IVC, 1tu

URGENT

TT-ivc OUT–IVC, 1tu
(during lunch) URGENT (no ivc)
TTurgent URGENT 1tu
TTclinic CLINIC 2tu
TTspecialn SPECIALn 1–4tu

We model this allocation by using a timeslot-type specification (TTS). A timeslot-
type specifies which patient can be scheduled to a certain timeslot (Table 4). The TTS
thus determines how much of the resource capacity is allocated to the patient groups.
See Figure 1 for an example TTS in the CT-scan resource calendar as used in practice.
The TTS is not necessarily fixed as the capacity allocation can be dynamically altered.

The TTspecialn type of timeslots can only be used by very specific types of patients.
For each TTspecialn type there is a rule which states that if there are still any free slots
remainingrn days in advance, these slots are changed to TTout type of timeslots, to not
waste the capacity otherwise. This rule is currently the only automatic TTS adjustments
in operation at the hospital.

2.3 Scheduling

Patient scheduling is the process of assigning patients to timeslots on the calendar thus
setup, i.e. making appointments. In the case we describe, two elements influence overall
scheduling performance: first, how well the TTS matches the actual patient arrival, and
second, the used scheduling method (the selection of a timeslot per patient given the
TTS).

As in many hospitals, the actual scheduling of appointmentsfor CT-scans is done
manually in the AMC. Requests arrive either by telephone or via request form. Patients
are scheduled in turn by human schedulers, who look at the calendar for the availability
of a suitable slot, or use the search function of the electronic calendar system. The
search function returns a list of the first available suitable timeslots. For urgent patients
the search function is usually not used, instead, the schedulers look at the first few days
of the calendar and select a free timeslot by hand. Often the human schedulers deviate
from the offered list for non-urgent patients as well. They can take a patient’s personal
attributes into account, including a patient’s preference(e.g. for a specific day, or time).
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Fig. 1. Example TTS (capacity allocation) on CT-scan calendar.

3 Simulation

Based on the case study we have implemented a patient scheduling simulation, see
Figure 2. We use the simulation in the evaluation of different scheduling and capacity
allocation approaches. The case inputs of our simulation model are based on the case
we studied in the previous Section. These elements togetherwith our adaptive model
(Section 4) are the inputs of our simulation. We discuss the main parts of our simulation
in more details next.

3.1 Patient Arrival Simulation

With our model of patient properties and the distributions over patient attributes (Table
2) derived from analyzing the historical data, we can simulate the stochastic arrival
process of patients. To simulate the stochastic arrival process, including trends where
some periods of weeks are busier than others, we model the number of patients per
week by means of a random walk.
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Fig. 2. Overview of Hospital Patient Scheduling Model.

A standard random walk with a drift� towards the average�n fits the distribution
over the number of patients arrivals per week. The number of patients for next week
(nw+1) is determined as a function of the current patient arrivalsnw as:nw+1 = nw +N (0; �) + �n� nw� ;
whereN (0; �) a normally distributed fluctuation of patient arrivals. We set: �n = 250,n0 = �n, � = 30, and� = 3.

Furthermore, arrival of patients within the week is stochastic, simulating that some
days have more arrivals than other days. Because of extra rounds forCLINIC patients
on Monday and Friday, patient arrival is slightly structured during the week. On Mon-
day and Friday, twice as many requests for CT-scans ofCLINIC patients are ordered
compared to the other three weekdays. Request for urgent outpatients arrive following
a uniform distribution over the week. Because of the relative small number ofURGENT
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andCLINIC patients there can occur a large difference in number of arrivals between
days. Non-urgent outpatient have a planning window of two weeks, their arrival dis-
tribution over the week is of little influence on performance, we assume that request
arrivals for these non-urgent outpatients follow a uniformdistribution over the week.
The resource is closed on Saturday and Sunday, appointmentsfor URGENT andCLINIC

patients requested on a Friday with aPLANWIN of (0,1) or (0,2) must be scheduled the
same day.

3.2 Resource Calendar

In our simulation, we use a resource calendar, which is practically the same as the
calendar used in practice. Opening time on the calendar is 8:30, while the resource
closes at 16:45. The TTS used (which defines the capacity allocation) is set such that
there is no other TTS with a better performance given the stochastic patient arrival and
optionally an adjustment method. The best initial TTS was determined experimentally.

3.3 Scheduling

In our experiments, we want to simulate current scheduling practice to evaluate it in
scenarios different from current practice. In current scheduling practice there is consid-
erable variation in the rules for selection timeslots. Often patient preferences and other
considerations are taken into account while selecting timeslots. We define a schedule
method that simulates this in the following way:

First Come Randomly Served (FCRS) Patients are scheduled in order of arrival. A
patient is assigned to a timeslot within his planning window, randomly selected from
all the free timeslots of allowed types in his planning window. If there are no free
timeslots, the first free timeslot after the planning windowis selected.

For URGENT andCLINIC patients, patient preferences are of little importance be-
cause they have a high urgency. However due to the mix of urgency within URGENT

andCLINIC patients, which often the human schedulers do not take into account, these
patients are also scheduled randomly to allowed timeslots in the planning window. In
Section 4.1 we discuss a dynamic approach to the scheduling of URGENT andCLINIC

patients.

3.4 Performance Measure

Our performance measure expresses that patients must be scheduled within their plan-
ning windows. As a performance measure per patient group, wetake the percentage of
patients scheduled on time (within their planning window).We call this percentage the
service level (SL) of the group. This is a typical performance indicator in the hospital. It
is important that each groupG has a high service level. Hospital policy determines the
importance of each group in the overall scheduling objective. In discussion with hos-
pital experts at the AMC, all groups were given equal weights, and the lowest service
level between groups, the most indicative of a department’sperformance. We therefore
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define our objective to maximize the minimum service level (MSL) of the four main
groups of Table 2: MSL = minG � jpatient2 G = ontimejjGj � ;
where ontime is defined as scheduled within the planning window of the patient. In
our AMC case study, groups with higher urgency are also of smaller size, while all
groups have equal weight in MSL. Therefor, to maximize performance, it is often more
important to schedule a single urgent patient on time than itis to schedule a single
non-urgent patient on time.

4 Adaptive Model

In the hospital, the allocation of capacity, through the TTSon the resource calendar, can
be separated in different timeframes:

1. Long term (months): the initial overall allocation is determined, based on long-term
expectations of patient arrivals and hospital policy.

2. Medium term (weeks): adjustments can be made for known future events, e.g. hol-
iday periods, additional workload, or planned maintenanceof the machines. These
adjustments could include adjusting the openings hours to optimize performance.
(In some initial experiments, we observed that adjusting the allocation weekly,
based on the realization of patient arrival, had a limited effect.)

3. Short term (days): small adjustments to the allocation are made daily, based on the
realized and expected patient arrivals.

In our research, our focus is on an adaptive approach for short term adjustments.
Additionally we look at medium term adjustments of opening hours. We discuss these
in turn next.

4.1 Short-term adjustments

Our short-term adaptive approach consists of two parts: a scheduling method, and a
method for adjusting capacity between patient groups. In our approachURGENT and
CLINIC patients are scheduled by taking the expected number of patient arrivals per
day and their specific planning window into account. Secondly, we use the expectation
values to compare available capacity with needed capacity on the first three days, and
change capacity between groups.

Adaptive Urgent Scheduling To schedule urgent and clinic patients on time, the al-
located capacity must be large enough. Some patients with different PLANWINs use
the same type of slots:URGENT with PLANWINs of (0,1), (0,2), or (0,3) use timeslots
of type TTurgent;CLINIC patients withPLANWINs of (0,1) or (0,2) use timeslots of
type TTclinic. Because of this mix of urgency, there is a trade-off between scheduling
patients to the earliest timeslots available to not waste capacity and keeping timeslots
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open for the possible arrival of more urgent patients. In current hospital practice, hu-
man schedulers do not have an overview to solve this efficiently (either too many low-
urgency patients are scheduled in place of high-urgency ones or too much capacity is
wasted).

In our approach, we solve the problem of scheduling patientswith mixed urgency,
by virtually dividing urgent capacity while scheduling: a number of timeslots are specif-
ically reserved for patients with a certainPLANWIN (for each day of arriving patients).
In Table 5 we show the matrix of reservations forURGENTpatients,R(TTurgent)PLANWINreqd ,
for eachPLANWIN and request dayreqd (relative to the current day0). We similarly
define a reservation matrix forCLINIC patients on TTclinic capacity.

Table 5.Reservations within TTurgent type timeslots

request day
PLANWIN 0 1 reqd
(0,1) R(TTurgent)(0;1)0 R(TTurgent)(0;1)1 R(TTurgent)(0;1)reqd
(0,2) R(TTurgent)(0;2)0 R(TTurgent)(0;2)1 R(TTurgent)(0;2)reqd
(0,3) R(TTurgent)(0;3)0 R(TTurgent)(0;3)1 R(TTurgent)(0;3)reqd

The number of timeslots reserved per urgency and arrival day(size of reservation)
is the expectation of the number of patients and some additional surplus capacity. The
expected number of patients is small for a specific reservation and has high variability.
To select which timeslots are reserved, we use the followingheuristic for placing the
reservations over timeslots on the calendar: the reservations are placed on the last day of
thePLANWIN ( R(TTurgent)(0;1)0 on day 1,R(TTurgent)(0;2)0 on day 2, etc) see Figure
3. By placing the reservations at the end of the planning window, variability of their
usage is minimized. Note that because the resource is closedin the weekend, a large
number of reservations is positioned on Friday; this corresponds to practice, where on
Fridays a large capacity is allocated toURGENT andCLINIC patients.

Given the reservations,URGENTpatients are scheduled first come first serve (FCFS),
to a timeslot either not reserved or reserved and matching the patient’s entry-date and
PLANWIN. To make this method more flexible and reduce utilization variability, a reser-
vation violation is allowed if the patient is not scheduled on time otherwise. Specifically,
if there are no allowed timeslots available in the patient’splanning window, the patient
is scheduled to the day within hisPLANWIN which has the most available timeslots
regardless of reservations. We call this scheduling with flexible reservation (FlexRes),
see Algorithm 1. We use a similar algorithm for schedulingCLINIC patients to TTclinic
type timeslots.

Adjusting Capacity In the previous section we discussed how we use reservations
of timeslots in schedulingURGENT andCLINIC patients. Crucially, if timeslots within
the reservations are not used, these could be made availablefor other groups. In our
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Algorithm 1 FlexRes: Scheduling with Flexible Reservations forURGENT patients.
1: p is the current to be scheduled patient at day 0
2: R(TTurgent)PLANWINreqd is the number of TTurgent slots reserved for patients withPLANWIN and

have a request date ofreqd.
3: FREE(TTurgent)d is the number of free TTurgent timeslots on dayd
4: TS = the first available TT urgent timeslot
5: if PLANWIN == (0; 2) OR PLANWIN == (0; 3) then
6: if (TS is on day 1 ANDFREE(TTurgent)1 � R(TTurgent)(0;1)reqd=0) then
7: TS = the first available TTurgent timeslot after day 1
8: if PLANWIN == (0; 3) AND TS is on day 2 AND

(FREE(TTurgent)2 � R(TTurgent)(0;1)reqd=1 + R(TTurgent)(0;2)reqd=0 then
9: TS = the first available TTurgent timeslot after day 2

10: if TS is outsidePLANWIN then
11: D is day withinPLANWIN with most free TTurgent slots
12: if FREE(TTurgent)D > 0 then
13: TS = the first available TTurgent timeslot on day D
14: schedulep to TS

Algorithm 2 Dynamic : Adjusting capacity between patient groups.
1: change allFREE(TTout)1 (on day 1) timeslots into TTurgent
2: if FREE(TTurgent)1 > R(TTurgent)(0;1)0 then
3: change (FREE(TTurgent)1 � R(TTurgent)(0;1)0 ) number of TTurgent timeslots into

TTclinic
4: if FREE(TTclinic)1 > R(TTclinic)(0;1)0 then
5: change (FREE(TTclinic)1 �R(TTclinic)(0;1)0 ) number of TTclinic timeslots into TTur-

gent
6: CHSLOTS =Pd�2 FREE(TTurgent)d �Pd�2R(TTurgent)0;dd�1
7: change (min(FREE(TTurgent)2; CHSLOTS) number of TTurgent timeslots on day 2

into TTout
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Fig. 3. Positioning of reservations within TTurgent.

approach, we dynamically manage allocated capacity to be adaptive to stochastic patient
arrival.

To maintain high MSL, at the beginning of the current day0, capacity is shifted
(Algorithm 2) between timeslot types on the days that their planning windows overlap:
on day1 all remaining TTout and TT-ivc capacity is changed into TTurgent capacity; on
day1 capacity can be shifted between TTurgent and TTclinic; on day 2 some TTurgent
timslots can be changed into TTout (see Table 6). Note that because Algorithm 1 does
not reserve timeslots on day0 (see Figure 3) shifting capacity between timeslot types
TTurgent and TTclinic on the current day0 is not neccessary in our approach. Because
adjustments are made at least one day in advance, it is sufficient to adjust once a day
instead of continuously.

Thresholds for reallocating capacity between timeslot types are based on the reser-
vations discussed above. The goal of the adjustments is to reallocate capacity, such that
all reservations (which include surplus) can be made withinthe capacity allocated per
group. In this step, in order to optimize allocation, reservations are no longer necessarily
placed on the last day of the planning window. Any timeslot not needed for reservation
can be changed into a timeslot of another type.

Table 6. Adjustment of capacity, increased (+) or reduced (-), for different timeslot types and
days (with corresponding line in Algorithm 2)

Day
Capacity Type 0 1 2
TTout � (1) + (7)
TTurgent + (1),� (3),+ (5) � (7)
TTclinic + (3),� (5)

4.2 Adjusting Opening Hours

Adjusting the calendar on a medium term time scale, is suitedfor reacting to busy pe-
riods, holidays, planned resource maintenance, or increased workload due to additional
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patient programs. Here we focus on adjusting the opening hours for quiet and busy
periods, which is important for maintaining short access times and high resource and
staff efficiency. This is currently not done efficiently in hospital practice, because it is
difficult to oversee the effect of an adjustment long enough in advance. In busy peri-
ods, when the total demand reaches or exceeds resource capacity, access time increases
rapidly. With little extra capacity this can usually be avoided. Reducing opening hours
in slow periods can compensate increased staff working hours in busy periods.

Although fixed working hours are still preferred by the staff, there is some flexibility
in the working hours if the changes are known in advance. We assume that for the
planning of staff, the actual opening hours of the resource must be known at least one
week in advance. In our approach we fix the opening time of the resource, and adjust
the closing time. We set a parameterOHw which defines the total amount of openings
hours of weekw. Before the beginning of weekw � 1 we determine the best value forOHw.

We use a standard bi-directed search method, with a discretestep size ofstepsize,
where performance of different values ofOHw are determined by a number of simula-
tion runs using our patients scheduling simulator. We search for the smallestOHw that
has an MSL performance of at leastPpref (preferred performance level). In these simu-
lations we schedule patients arriving over 2 weeks, since the opening hours are adjusted
for the second week. The current partially filled-in calendar and the estimation on the
expectation of future patient arrivals are used as the starting point of the simulation. We
use the number of patients from the previous weeks, as an estimate for future weeks.
Conceivably, we can easily use more specific estimates for known holidays etc. When
adjusting the openings hours on the calendar the total hoursOHw are divided equally
over the days.

This approach takes into account that on each day the closingtime can not be re-
duced further than the latest appointment already scheduled in the partially filled-in cal-
endar. To make it possible to reduce the openings hours in quiet periods for increased
capacity usage, a small adjustment to the scheduling methodis used: for weeks of which
the opening hours can still be adjusted, patients are preferably scheduled to timeslots
before 3pm, to allow opportunities for earlier closing times.

5 Experiments

We conduct computer experiments to evaluate our adaptive optimization of the schedul-
ing process. In our simulations, we generate realistic problem runs. We compare the
performance of our fully adaptive approach to benchmark approaches. Performances
are averaged over 70 runs. Within each run, patients arrive during 20 weeks. To avoid
start-up effects, we start with a partially filled-in calendar, and measure average perfor-
mance (MSL) only over the last 10 weeks of the simulation run.

We use a TTS optimized for a stochastic arrival of patients, including:

– 18 TTclinic timeslots reserved for an average of 14 (�4) CLINIC patients per week,
– 34 TTurgent timeslots reserved for an average of25 (�8) URGENT patients per

week.
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No-shows and machine downtime are not included in simulation runs presented here,
these had only a limited effect in our experiments, other that creating more busy periods
which is captured by our arrival model.

We determined the best sizes of the reservations experimentally, see Table 7 for
the used values in comparison with the expected number of patients per reservation.
Because we use patient expectation per request-date and urgency (see Table 5) the actual
reservation size is a small number. Determining the optimalsize of a reservation is
relatively easy due to the discreteness of timeslots. The smallest planning window (0,1)
has the least average number of patients and largest variability and therefore needs the
most relative surplus. Larger planning windows (lower urgencies) have less variability,
and can also make use of surplus capacity reserved for higherurgency if necessary
(Algorithm 1).

Table 7.Reservation sizes (expected n.o. patients).
TTurgent TTclinc TTclinc

planwin all days mon, fri tue, wed, thu
(0,1) 3 (1:6) 4 (2) 2 (1)
(0,2) 2 (1:6) 2 (2) 1 (1)
(0,3) 2 (1:6)

First, we show our main results for short-term scheduling methods and adaptive al-
location of capacity. Second, we show how opening hours can be adjusted to maintain
high MSL or increases resource usage.

5.1 Short-term

We present average performances of three scheduling approaches with a static alloca-
tion, and the same three approaches with capacity dynamically adjusting by the method
presented in this paper. The first benchmark is a baseline approach using FCRS for
all patients (see Section 3.3). This approach is similar to the practical case in a hos-
pital where there is no staff to adjust the calendar dynamically, or where the calendar
supervisor is absent due to illness of vacation. The second benchmark is the standard
scheduling rule First Come First Serve (FCFS), which optimizes resource efficiency but
does not consider any stochastic element in the scheduling process. The third approach
is our scheduling method forURGENTandCLINIC patient based on flexible reservations
(FlexRes), Algorithm 1. All three approaches are evaluatedwith either a static calendar
or in combination with our approach to dynamic adjustments of capacity (Dynamic),
Algorithm 2.

We present the results of three different scenarios for the number of patients arriv-
ing per week:nw is given by a random walk (see Section 3.1),nw is constant withnw = 250, andnw is constant withnw = 270. The average performances (MSL),
standard deviation (stdv), and average capacity usage (cu)are presented in Table 8. We
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additionally compare performances to the baseline approach (FCRS with static calen-
dar) with an additional capacity of 2.5 hours per week (6% extra capacity).

Table 8.Performances (MSL) averaged over 70 runs, with standard deviation (stdv.) and average
capacity usage, for three different scenarios, given 41h15min openings hours per week.

Random Walk
Approach: performance MSL stdv. cap.usage
FCRS static 0:79 0:19 0:91
FCFS static 0:78 0:25 0:93
FlexRes static 0:77 0:24 0:91
FCRS Dynamic 0:88 0:14 0:91
FCFS Dynamic 0:88 0:10 0:93
FlexRes Dynamic 0.96 0:07 0:91
FCRS static + 2,5h 0:96 0:03 0:86

Constant 250
Approach: performance MSL stdv. cap.usage
FCRS static 0:88 0:06 0:91
FCFS static 0:92 0:05 0:93
FlexRes static 0:85 0:16 0:91
FCRS Dynamic 0:94 0:03 0:91
FCFS Dynamic 0:95 0:02 0:92
FlexRes Dynamic 0.98 0:01 0:91
FCRS static + 2,5h 0:97 0:03 0:86

Constant 270
Approach: performance MSL stdv. cap.usage
FCRS static 0:56 0:16 0:97
FCFS static 0:28 0:26 0:97
FlexRes static 0:42 0:29 0:97
FCRS Dynamic 0:76 0:07 0:97
FCFS Dynamic 0:68 0:12 0:99
FlexRes Dynamic 0.93 0:03 0:97
FCRS static + 2,5h 0:96 0:02 0:92

The results in Table 8 show that our dynamic approach to capacity allocation in
combination with flexible reservations, has a very high performance close to a MSL
of 1:0, even in the busiest (constant withnw = 270) and most stochastic (random
walk) scenarios. Even though standard deviation is generally high, due to the wide range
of problem instances created in our simulation, our dynamicapproach has the lowest
performance-variability. The performance of FlexRes Dynamic is significantly better
than FCRS static (p-value =< 10�10), FlexRes Dynamic better than FCRS dynamic
(p-value =< 10�6), and FCRS Dynamic better than FCRS static (p-value< 10�6),
using the two-sample Kolmogorov-Smirnov test with significance level� = 0:01 for
the random walk scenario.
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In the random walk scenario, FCRS with a static calendar has an average MSL per-
formance level of0:79: of the worst-off patient group only 79% of patients are sched-
uled on time. With dynamic adjustments and flexible reservation performance increases
to 0:94: even of the worst-off patient group 94% of patients is scheduled on time. The
capacity of the static baseline approach has to be increasedwith 6% to achieve similar
performance as our dynamic approach.

With a static allocation, our scheduling approach with flexible reservation (FlexRes)
achieves performance similar to the scheduling benchmarks. However, our dynamic
adjustments approach performs far better in combination with FlexRes, than any of the
benchmark schedulers.

5.2 Medium-term

When more patients arrive than expected, access time increases exponentially [6]. Adding
extra capacity temporarily can prevent this from happening. Our approach (Section
4.2) proposes changes in openings hours to resource managers to maintain high per-
formance. We show the experimental results for an example scenario of 16 weeks with
a short busy period. The number of patientsnw per week in this scenario is given by:nw = 200jw � 4; nw = 300j6 � w � 11; nw = 250jw = 5; w � 12
In Figure 4 we show the performances (averaged over 10 runs) of the baseline approach
and our dynamic approach with fixed capacity, against our dynamic approach with ad-
justable openings hours (see Section 4.2, and the parameters in Table 9). We plot the
extra time (in minutes) used by our dynamic approach with adjustable openings hours,
per week and averaged over the weeks, in Figure 5.

Table 9.Adaptive approach parameter values.

parameter valueOHstandard 41 hours, 15 minutes
(from 8:30 till 16:45)stepsize (OH) 30 minutesPpref 0.95 (MSL)

It is clear that a busy period results in a great decline in performance for the baseline
approach. Our fully adaptive approach with fixed capacity does decline in performance
but reaches good performance quickly after the busy period.The fully adaptive ap-
proach with adjustable openings hours can adjust capacity such that high performance
is maintained over all weeks. Summed over all 16 weeks, it uses little more than the
total capacity used by approaches with fixed capacity.
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Fig. 4. Performance over weeks with variable and fixed OH.

Fig. 5. Extra time (in minutes) used, per week and averaged over weeks.

6 Related Work

There is a number of research fields closely related to our work. Much literature consid-
ers the hospital capacity planning problem on a strategic level. On an operational level
patient scheduling is researched, either specific scheduling methods or the scheduling
process in hospital practice. Additionally there is work oncoordination of scheduling
multiple patient appointments and optimizing patient flow.

Capacity planning in hospitals at a strategic level is extensively studied in the liter-
ature, e.g. [8] [9] [10], for an overview see [2] and [11]. Most approaches consider the
capacity allocation problem on a strategic level; the allocation is static on the opera-
tional level. Here we focus on short-term dynamic adjustments to the initial allocation.

Exceptions to the strict separation of capacity planning and operational schedul-
ing are [12], [13], [14]. However, all three papers only consider allocation capacity
to two priority classes, where we consider multiple priorities with additional medical
constraints. In [12], the authors similarly consider a CT-scan scheduling problem. The
approach assumes the use of a pool of on-call outpatients that can be scheduled to un-
used timeslots. The results show the benefit of a flexible approach compared to a static
allocation. The work however, does not consider a full scheduling problem as the au-
thors assume all patient arrivals are known at the beginningof each day. Furthermore,
the authors use a more abstract case with only two types of reservations and measure
performance in growth rate of access time. In [14] the authors consider a model similar
to ours, but focus on optimizing the usage of overbooking andovertime, without dy-
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namic rules for scheduling and capacity allocation. In [15], the authors discuss a profit
maximization problem of a MRI scheduling problem for three classes of patients. Their
more abstract model requires setting specific revenue and penalty functions, for which
the authors identify properties of an optimal solutions.

A more abstract approach to capacity planning can also be taken from a queuing
theory point of view [6]. Although realistic models are too complex to be analyzed
mathematically, the problem and solutions are related: overflow rules between queues
can correspond to a dynamic usage of capacity. The definitionof queues and servers
[16][17], corresponds to the problem of defining patient groups and timeslot types.
However, queuing systems do not consider specific timeslotsand appointments, and
therefore do not capture the full scheduling problem.

The patient scheduling problem is not solved with optimal capacity allocation alone,
the actual method of scheduling determines whether the allocated capacity is efficiently
used. Scheduling methods are studied for various problem properties and objective mea-
sures, including online problems, for an overview see [18].We have partly based our
scheduling approach on insights from scheduling theory, specifically scheduling prob-
lems with objectives related to MSL. Furthermore, the scheduling method can be opti-
mized for other considerations such as minimizing doctor and patient idle time during
the execution of a schedule [19] [20]. Additionally, optimizing the logistical process in
hospital practice can also be largely beneficial for resource efficiency [5] [21].

Short access time to all resources is necessary for high patient throughput in the hos-
pital. Optimally coordinating patient paths between resources is an additional problem
[22] [23]. In our approach, the human schedulers are still responsible for coordination.
Multi-agent approaches seem promising to solve this distributed and dynamic coordi-
nation problem [24] [25] [26], and are part of our current research.

7 Conclusions

We presented a detailed model for scheduling multiple patient groups to a hospital
resource. Specifically we presented the details of the CT-scan scheduling case at the
academic hospital AMC. Short access time to central diagnostic resources is crucial
for high patient throughput in the hospital. Arriving patients have varying attributes,
including their urgency, corresponding to the group they belong to. Patients are sched-
uled to a resource calendar with capacity allocated per group. This capacity allocation
must be flexible to achieve high service levels for all groups. We have implemented a
realistic simulation of our case study to analyze the problem and evaluate approaches.

Given our practical case, model validation is a complex issue. The current practice
and historical data provide only a single instance, and it isdifficult to identify appropri-
ate performance indicators for a wide range of settings. Recent organizational changes
in the department limit the availability or usability of historical data. Additional to his-
torical data, for which the average capacity usage was the most indicative, we evaluated
model elements in numerous discussions with hospital experts with many years of de-
tailed experience.

We developed a dynamic approach to adjusting the allocationon the calendar. We
focus on short term adjustments given the current state of the calendar and the expecta-
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tion of future patient arrival. We create flexible reservations for patients per request-date
and urgency. Patients are scheduled based on these reservations, and the reservations de-
termine how much capacity can be shifted between different patient groups. Addition-
ally we use our simulation to determine the best medium-termadjustment of openings
hours for maintaining high service levels, which can serve as proposals to the resource
manager.

The results of our simulation experiments show that our approach can effectively
schedule patients groups with different attributes and make efficient use of capacity. By
dynamically adjusting capacity allocation, overall, all patient groups benefit. We have
shown that there is a significant improvement over static capacity allocation. In current
practice, adjusting the calendar manually requires constant attention and is critically
dependent on the expertise of the calendar supervisor.

In our experiments, we focus on measuring the minimum service level of patient
groups. This objective expresses the goal of the AMC to have short access times for all
groups, where short can be differently defined per group. In general, the objective of our
approach is efficiency of scheduling and capacity usage. By using FCRS for scheduling
outpatients we simulate the effect of including patient preferences in the objective.

Many resources in the hospital are used by multiple patient groups, with different
attributes such as urgency. Implicitly or explicitly, the resource capacity must be allo-
cated to these groups of patients. Our approach can readily be applied to these problems,
given the patient group definitions and parameter values. Ingeneral, when capacity is
allocated, dynamically adjusting the allocation increases efficiency.

Our approach is on a operational level. Furthermore, our approach matches the cur-
rent schedule procedure in the hospital. An approach that improves, not replaces, the
current scheduling process is most beneficial. Human schedulers, as well as doctors, are
used to working with an allocation of capacity. This is important for flexibility in usage
and acceptance of the system. Furthermore it will not cause any disruptions on existing
coordination with external logistics in other departments, and personal schedules. This
is important for user acceptance and fast implementation. Notably, based on our results,
the AMC hospital has started cooperation with a third-partysoftware-company to fully
develop our dynamic approach into implementation.

In future work we want to develop our dynamic approach to capacity allocation
further. We will focus on a more general method for flexible usage of capacity, where the
parameters of our approach are fine-tuned automatically. This will coincide with more
case studies at different departments of the AMC. We will extend the scheduling method
to take patient preferences into account. Based on our results for efficient resource usage
locally we will also scale the scheduling problem to multiple departments and research
mechanisms for coordination between departments.
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